基于图形滤波的RGB-D图像快速颜色引导深度去噪

Qiwei Huang, Ruikang Li, Zidong Jiang, Wei Feng, Sijie Lin, Hui Feng, Bo Hu
{"title":"基于图形滤波的RGB-D图像快速颜色引导深度去噪","authors":"Qiwei Huang, Ruikang Li, Zidong Jiang, Wei Feng, Sijie Lin, Hui Feng, Bo Hu","doi":"10.1109/IEEECONF44664.2019.9048703","DOIUrl":null,"url":null,"abstract":"Depth images captured by off-the-shelf RGB-D cameras suffer from much stronger noise than color images. In this paper, we propose a method to denoise the depth images in RGB-D images by color-guided graph filtering. Our iterative method contains two components: color-guided similarity graph construction, and graph filtering on the depth signal. Implemented in graph vertex domain, filtering is accelerated as computation only occurs among neighboring vertices. Experimental results show that our method outperforms state-of-art depth image denoising methods significantly both on quality and efficiency.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"5 1","pages":"1811-1815"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast Color-guided Depth Denoising for RGB-D Images by Graph Filtering\",\"authors\":\"Qiwei Huang, Ruikang Li, Zidong Jiang, Wei Feng, Sijie Lin, Hui Feng, Bo Hu\",\"doi\":\"10.1109/IEEECONF44664.2019.9048703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth images captured by off-the-shelf RGB-D cameras suffer from much stronger noise than color images. In this paper, we propose a method to denoise the depth images in RGB-D images by color-guided graph filtering. Our iterative method contains two components: color-guided similarity graph construction, and graph filtering on the depth signal. Implemented in graph vertex domain, filtering is accelerated as computation only occurs among neighboring vertices. Experimental results show that our method outperforms state-of-art depth image denoising methods significantly both on quality and efficiency.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"5 1\",\"pages\":\"1811-1815\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由现成的RGB-D相机拍摄的深度图像比彩色图像遭受更强的噪声。本文提出了一种基于颜色引导图滤波的RGB-D图像深度图像去噪方法。我们的迭代方法包含两个部分:颜色引导的相似图构建和深度信号的图滤波。在图顶点域实现,滤波速度加快,因为计算只发生在相邻顶点之间。实验结果表明,该方法在质量和效率上都明显优于现有的深度图像去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Color-guided Depth Denoising for RGB-D Images by Graph Filtering
Depth images captured by off-the-shelf RGB-D cameras suffer from much stronger noise than color images. In this paper, we propose a method to denoise the depth images in RGB-D images by color-guided graph filtering. Our iterative method contains two components: color-guided similarity graph construction, and graph filtering on the depth signal. Implemented in graph vertex domain, filtering is accelerated as computation only occurs among neighboring vertices. Experimental results show that our method outperforms state-of-art depth image denoising methods significantly both on quality and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信