{"title":"平面尖角曲线的异同态、同位素和编织单因子分解","authors":"Viatcheslav Kharlamov , Viktor Kulikov","doi":"10.1016/S0764-4442(01)02115-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove that there is an infinite sequence of pairs of plane cuspidal curves, <em>C</em><sub><em>m</em>,1</sub> and <em>C</em><sub><em>m</em>,2</sub>, of degree deg(<em>C</em><sub><em>m</em>,1</sub>)=deg(<em>C</em><sub><em>m</em>,2</sub>)→∞, such that the pairs <span><math><mtext>(</mtext><mtext>CP</mtext><msup><mi></mi><mn>2</mn></msup><mtext>,C</mtext><msub><mi></mi><mn>m,1</mn></msub><mtext>)</mtext></math></span> and <span><math><mtext>(</mtext><mtext>CP</mtext><msup><mi></mi><mn>2</mn></msup><mtext>,C</mtext><msub><mi></mi><mn>m,2</mn></msub><mtext>)</mtext></math></span> are diffeomorphic, but <em>C</em><sub><em>m</em>,1</sub> and <em>C</em><sub><em>m</em>,2</sub> have non-equivalent braid monodromy factorizations. These curves give rise to the negative solutions of “Dif ⇒ Def” and “Dif ⇒ Iso” problems for plane irreducible cuspidal curves. In our examples, <em>C</em><sub><em>m</em>,1</sub> and <em>C</em><sub><em>m</em>,2</sub> are complex conjugate.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 855-859"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02115-2","citationCount":"18","resultStr":"{\"title\":\"Diffeomorphisms, isotopies, and braid monodromy factorizations of plane cuspidal curves∗\",\"authors\":\"Viatcheslav Kharlamov , Viktor Kulikov\",\"doi\":\"10.1016/S0764-4442(01)02115-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove that there is an infinite sequence of pairs of plane cuspidal curves, <em>C</em><sub><em>m</em>,1</sub> and <em>C</em><sub><em>m</em>,2</sub>, of degree deg(<em>C</em><sub><em>m</em>,1</sub>)=deg(<em>C</em><sub><em>m</em>,2</sub>)→∞, such that the pairs <span><math><mtext>(</mtext><mtext>CP</mtext><msup><mi></mi><mn>2</mn></msup><mtext>,C</mtext><msub><mi></mi><mn>m,1</mn></msub><mtext>)</mtext></math></span> and <span><math><mtext>(</mtext><mtext>CP</mtext><msup><mi></mi><mn>2</mn></msup><mtext>,C</mtext><msub><mi></mi><mn>m,2</mn></msub><mtext>)</mtext></math></span> are diffeomorphic, but <em>C</em><sub><em>m</em>,1</sub> and <em>C</em><sub><em>m</em>,2</sub> have non-equivalent braid monodromy factorizations. These curves give rise to the negative solutions of “Dif ⇒ Def” and “Dif ⇒ Iso” problems for plane irreducible cuspidal curves. In our examples, <em>C</em><sub><em>m</em>,1</sub> and <em>C</em><sub><em>m</em>,2</sub> are complex conjugate.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 9\",\"pages\":\"Pages 855-859\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02115-2\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffeomorphisms, isotopies, and braid monodromy factorizations of plane cuspidal curves∗
In this paper we prove that there is an infinite sequence of pairs of plane cuspidal curves, Cm,1 and Cm,2, of degree deg(Cm,1)=deg(Cm,2)→∞, such that the pairs and are diffeomorphic, but Cm,1 and Cm,2 have non-equivalent braid monodromy factorizations. These curves give rise to the negative solutions of “Dif ⇒ Def” and “Dif ⇒ Iso” problems for plane irreducible cuspidal curves. In our examples, Cm,1 and Cm,2 are complex conjugate.