脉冲分数阶微分方程拓扑度法解的存在性

IF 0.3 Q4 MATHEMATICS, APPLIED
Taghareed A. Faree, S. K. Panchal
{"title":"脉冲分数阶微分方程拓扑度法解的存在性","authors":"Taghareed A. Faree, S. K. Panchal","doi":"10.12941/JKSIAM.2021.25.016","DOIUrl":null,"url":null,"abstract":"This paper is studied the existence of a solution for the impulsive Cauchy problem involving the Caputo fractional derivative in Banach space by using topological structures. We based on using topological degree method and fixed point theorem with some suitable conditions. Further, some topological properties for the set of solutions are considered. Finally, an example is presented to demonstrate our results.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"1 1","pages":"16-25"},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS VIA TOPOLOGICAL DEGREE METHOD\",\"authors\":\"Taghareed A. Faree, S. K. Panchal\",\"doi\":\"10.12941/JKSIAM.2021.25.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is studied the existence of a solution for the impulsive Cauchy problem involving the Caputo fractional derivative in Banach space by using topological structures. We based on using topological degree method and fixed point theorem with some suitable conditions. Further, some topological properties for the set of solutions are considered. Finally, an example is presented to demonstrate our results.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"16-25\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2021.25.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2021.25.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

利用拓扑结构研究了Banach空间中涉及Caputo分数阶导数的脉冲Cauchy问题解的存在性。基于拓扑度方法和不动点定理,给出了一些合适的条件。进一步,考虑了解集的一些拓扑性质。最后,给出了一个算例来验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS VIA TOPOLOGICAL DEGREE METHOD
This paper is studied the existence of a solution for the impulsive Cauchy problem involving the Caputo fractional derivative in Banach space by using topological structures. We based on using topological degree method and fixed point theorem with some suitable conditions. Further, some topological properties for the set of solutions are considered. Finally, an example is presented to demonstrate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信