{"title":"无线单芯片系统中单片硅基射频压控振荡器的设计考虑","authors":"S. Raman, D. Sanderson, A. S. Klein","doi":"10.1109/WCT.2003.1321474","DOIUrl":null,"url":null,"abstract":"The paper discusses a number of important considerations in the design of differential VCO known as -G/sub M/ LC-tank VCO in Si technologies. The availability of multiple interconnect layers, culminating in a thick electroplated Cu (bump) layer, has led to significant improvements in the Q-factor of tank circuit inductors. In addition, the use of symmetric differential inductor structures can result in substantial improvements in Q through the enhancement of mutual coupling.","PeriodicalId":6305,"journal":{"name":"2003 IEEE Topical Conference on Wireless Communication Technology","volume":"16 1","pages":"172-174"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design considerations for monolithic Si-based RF VCOs in wireless single-chip systems\",\"authors\":\"S. Raman, D. Sanderson, A. S. Klein\",\"doi\":\"10.1109/WCT.2003.1321474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses a number of important considerations in the design of differential VCO known as -G/sub M/ LC-tank VCO in Si technologies. The availability of multiple interconnect layers, culminating in a thick electroplated Cu (bump) layer, has led to significant improvements in the Q-factor of tank circuit inductors. In addition, the use of symmetric differential inductor structures can result in substantial improvements in Q through the enhancement of mutual coupling.\",\"PeriodicalId\":6305,\"journal\":{\"name\":\"2003 IEEE Topical Conference on Wireless Communication Technology\",\"volume\":\"16 1\",\"pages\":\"172-174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE Topical Conference on Wireless Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCT.2003.1321474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Topical Conference on Wireless Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCT.2003.1321474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design considerations for monolithic Si-based RF VCOs in wireless single-chip systems
The paper discusses a number of important considerations in the design of differential VCO known as -G/sub M/ LC-tank VCO in Si technologies. The availability of multiple interconnect layers, culminating in a thick electroplated Cu (bump) layer, has led to significant improvements in the Q-factor of tank circuit inductors. In addition, the use of symmetric differential inductor structures can result in substantial improvements in Q through the enhancement of mutual coupling.