平面障碍物的低能量散射渐近性

IF 1 3区 数学 Q1 MATHEMATICS
T. Christiansen, K. Datchev
{"title":"平面障碍物的低能量散射渐近性","authors":"T. Christiansen, K. Datchev","doi":"10.2140/paa.2023.5.767","DOIUrl":null,"url":null,"abstract":"We compute low energy asymptotics for the resolvent of a planar obstacle, and deduce asymptotics for the corresponding scattering matrix, scattering phase, and exterior Dirichlet-to-Neumann operator. We use an identity of Vodev to relate the obstacle resolvent to the free resolvent and an identity of Petkov and Zworski to relate the scattering matrix to the resolvent. The leading singularities are given in terms of the obstacle's logarithmic capacity or Robin constant. We expect these results to hold for more general compactly supported perturbations of the Laplacian on $\\mathbb R^2$, with the definition of the Robin constant suitably modified, under a generic assumption that the spectrum is regular at zero.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low energy scattering asymptotics for planar obstacles\",\"authors\":\"T. Christiansen, K. Datchev\",\"doi\":\"10.2140/paa.2023.5.767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute low energy asymptotics for the resolvent of a planar obstacle, and deduce asymptotics for the corresponding scattering matrix, scattering phase, and exterior Dirichlet-to-Neumann operator. We use an identity of Vodev to relate the obstacle resolvent to the free resolvent and an identity of Petkov and Zworski to relate the scattering matrix to the resolvent. The leading singularities are given in terms of the obstacle's logarithmic capacity or Robin constant. We expect these results to hold for more general compactly supported perturbations of the Laplacian on $\\\\mathbb R^2$, with the definition of the Robin constant suitably modified, under a generic assumption that the spectrum is regular at zero.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/paa.2023.5.767\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/paa.2023.5.767","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了平面障碍物解的低能量渐近性,并推导了相应的散射矩阵、散射相位和外部狄利克雷-诺伊曼算子的渐近性。我们使用Vodev恒等式将障碍解与自由解联系起来,使用Petkov和Zworski恒等式将散射矩阵与解联系起来。前导奇异点是根据障碍物的对数容量或罗宾常数给出的。我们期望这些结果适用于在$\mathbb R^2$上的拉普拉斯算子的更一般的紧支持扰动,并适当地修改了Robin常数的定义,在谱在零处是正则的一般假设下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low energy scattering asymptotics for planar obstacles
We compute low energy asymptotics for the resolvent of a planar obstacle, and deduce asymptotics for the corresponding scattering matrix, scattering phase, and exterior Dirichlet-to-Neumann operator. We use an identity of Vodev to relate the obstacle resolvent to the free resolvent and an identity of Petkov and Zworski to relate the scattering matrix to the resolvent. The leading singularities are given in terms of the obstacle's logarithmic capacity or Robin constant. We expect these results to hold for more general compactly supported perturbations of the Laplacian on $\mathbb R^2$, with the definition of the Robin constant suitably modified, under a generic assumption that the spectrum is regular at zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信