网格感染的细粒度跟踪

Ashish Gehani, Basim Baig, Salman Mahmood, Dawood Tariq, Fareed Zaffar
{"title":"网格感染的细粒度跟踪","authors":"Ashish Gehani, Basim Baig, Salman Mahmood, Dawood Tariq, Fareed Zaffar","doi":"10.1109/GRID.2010.5697969","DOIUrl":null,"url":null,"abstract":"Previous distributed anomaly detection efforts have operated on summary statistics gathered from each node. This has the advantage that the audit trail is limited in size since event sets can be succinctly represented. While this minimizes the bandwidth consumed and helps scale the detection to a large number of nodes, it limits the infrastructure's ability to identify the source of anomalies. We describe three optimizations that together allow fine-grained tracking of the sources of anomalous activity in a Grid, thereby facilitating precise responses. We demonstrate the scheme's scalability in terms of storage and network bandwidth overhead with an implementation on nodes running BOINC. The results generalize to other types of Grids as well.","PeriodicalId":6372,"journal":{"name":"2010 11th IEEE/ACM International Conference on Grid Computing","volume":"32 1","pages":"73-80"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Fine-grained tracking of Grid infections\",\"authors\":\"Ashish Gehani, Basim Baig, Salman Mahmood, Dawood Tariq, Fareed Zaffar\",\"doi\":\"10.1109/GRID.2010.5697969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous distributed anomaly detection efforts have operated on summary statistics gathered from each node. This has the advantage that the audit trail is limited in size since event sets can be succinctly represented. While this minimizes the bandwidth consumed and helps scale the detection to a large number of nodes, it limits the infrastructure's ability to identify the source of anomalies. We describe three optimizations that together allow fine-grained tracking of the sources of anomalous activity in a Grid, thereby facilitating precise responses. We demonstrate the scheme's scalability in terms of storage and network bandwidth overhead with an implementation on nodes running BOINC. The results generalize to other types of Grids as well.\",\"PeriodicalId\":6372,\"journal\":{\"name\":\"2010 11th IEEE/ACM International Conference on Grid Computing\",\"volume\":\"32 1\",\"pages\":\"73-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th IEEE/ACM International Conference on Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRID.2010.5697969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE/ACM International Conference on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2010.5697969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

以前的分布式异常检测工作是基于从每个节点收集的汇总统计数据进行操作的。这样做的好处是审计跟踪的大小有限,因为事件集可以简洁地表示。虽然这最大限度地减少了带宽消耗,并有助于将检测扩展到大量节点,但它限制了基础设施识别异常来源的能力。我们描述了三种优化,它们一起允许对网格中异常活动的来源进行细粒度跟踪,从而促进精确的响应。我们通过在运行BOINC的节点上实现存储和网络带宽开销来演示该方案的可扩展性。研究结果也适用于其他类型的网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-grained tracking of Grid infections
Previous distributed anomaly detection efforts have operated on summary statistics gathered from each node. This has the advantage that the audit trail is limited in size since event sets can be succinctly represented. While this minimizes the bandwidth consumed and helps scale the detection to a large number of nodes, it limits the infrastructure's ability to identify the source of anomalies. We describe three optimizations that together allow fine-grained tracking of the sources of anomalous activity in a Grid, thereby facilitating precise responses. We demonstrate the scheme's scalability in terms of storage and network bandwidth overhead with an implementation on nodes running BOINC. The results generalize to other types of Grids as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信