{"title":"汉明度量下完美排列码的新的不存在性结果","authors":"Xiang Wang, Wenjuan Yin","doi":"10.3934/amc.2021058","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Permutation codes under the Hamming metric are interesting topics due to their applications in power line communications and block ciphers. In this paper, we study perfect permutation codes in <inline-formula><tex-math id=\"M1\">\\begin{document}$ S_n $\\end{document}</tex-math></inline-formula>, the set of all permutations on <inline-formula><tex-math id=\"M2\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula> elements, under the Hamming metric. We prove the nonexistence of perfect <inline-formula><tex-math id=\"M3\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula>-error-correcting codes in <inline-formula><tex-math id=\"M4\">\\begin{document}$ S_n $\\end{document}</tex-math></inline-formula> under the Hamming metric, for more values of <inline-formula><tex-math id=\"M5\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M6\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula>. Specifically, we propose some sufficient conditions of the nonexistence of perfect permutation codes. Further, we prove that there does not exist a perfect <inline-formula><tex-math id=\"M7\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula>-error-correcting code in <inline-formula><tex-math id=\"M8\">\\begin{document}$ S_n $\\end{document}</tex-math></inline-formula> under the Hamming metric for some <inline-formula><tex-math id=\"M9\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">\\begin{document}$ t = 1,2,3,4 $\\end{document}</tex-math></inline-formula>, or <inline-formula><tex-math id=\"M11\">\\begin{document}$ 2t+1\\leq n\\leq \\max\\{4t^2e^{-2+1/t}-2,2t+1\\} $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M12\">\\begin{document}$ t\\geq 2 $\\end{document}</tex-math></inline-formula>, or <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\min\\{\\frac{e}{2}\\sqrt{n+2},\\lfloor\\frac{n-1}{2}\\rfloor\\}\\leq t\\leq \\lfloor\\frac{n-1}{2}\\rfloor $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M14\">\\begin{document}$ n\\geq 7 $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M15\">\\begin{document}$ e $\\end{document}</tex-math></inline-formula> is the Napier's constant.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New nonexistence results on perfect permutation codes under the hamming metric\",\"authors\":\"Xiang Wang, Wenjuan Yin\",\"doi\":\"10.3934/amc.2021058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Permutation codes under the Hamming metric are interesting topics due to their applications in power line communications and block ciphers. In this paper, we study perfect permutation codes in <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ S_n $\\\\end{document}</tex-math></inline-formula>, the set of all permutations on <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ n $\\\\end{document}</tex-math></inline-formula> elements, under the Hamming metric. We prove the nonexistence of perfect <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula>-error-correcting codes in <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ S_n $\\\\end{document}</tex-math></inline-formula> under the Hamming metric, for more values of <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ n $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula>. Specifically, we propose some sufficient conditions of the nonexistence of perfect permutation codes. Further, we prove that there does not exist a perfect <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ t $\\\\end{document}</tex-math></inline-formula>-error-correcting code in <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ S_n $\\\\end{document}</tex-math></inline-formula> under the Hamming metric for some <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ n $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ t = 1,2,3,4 $\\\\end{document}</tex-math></inline-formula>, or <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ 2t+1\\\\leq n\\\\leq \\\\max\\\\{4t^2e^{-2+1/t}-2,2t+1\\\\} $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ t\\\\geq 2 $\\\\end{document}</tex-math></inline-formula>, or <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ \\\\min\\\\{\\\\frac{e}{2}\\\\sqrt{n+2},\\\\lfloor\\\\frac{n-1}{2}\\\\rfloor\\\\}\\\\leq t\\\\leq \\\\lfloor\\\\frac{n-1}{2}\\\\rfloor $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ n\\\\geq 7 $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M15\\\">\\\\begin{document}$ e $\\\\end{document}</tex-math></inline-formula> is the Napier's constant.</p>\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/amc.2021058\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2021058","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
Permutation codes under the Hamming metric are interesting topics due to their applications in power line communications and block ciphers. In this paper, we study perfect permutation codes in \begin{document}$ S_n $\end{document}, the set of all permutations on \begin{document}$ n $\end{document} elements, under the Hamming metric. We prove the nonexistence of perfect \begin{document}$ t $\end{document}-error-correcting codes in \begin{document}$ S_n $\end{document} under the Hamming metric, for more values of \begin{document}$ n $\end{document} and \begin{document}$ t $\end{document}. Specifically, we propose some sufficient conditions of the nonexistence of perfect permutation codes. Further, we prove that there does not exist a perfect \begin{document}$ t $\end{document}-error-correcting code in \begin{document}$ S_n $\end{document} under the Hamming metric for some \begin{document}$ n $\end{document} and \begin{document}$ t = 1,2,3,4 $\end{document}, or \begin{document}$ 2t+1\leq n\leq \max\{4t^2e^{-2+1/t}-2,2t+1\} $\end{document} for \begin{document}$ t\geq 2 $\end{document}, or \begin{document}$ \min\{\frac{e}{2}\sqrt{n+2},\lfloor\frac{n-1}{2}\rfloor\}\leq t\leq \lfloor\frac{n-1}{2}\rfloor $\end{document} for \begin{document}$ n\geq 7 $\end{document}, where \begin{document}$ e $\end{document} is the Napier's constant.
New nonexistence results on perfect permutation codes under the hamming metric
Permutation codes under the Hamming metric are interesting topics due to their applications in power line communications and block ciphers. In this paper, we study perfect permutation codes in \begin{document}$ S_n $\end{document}, the set of all permutations on \begin{document}$ n $\end{document} elements, under the Hamming metric. We prove the nonexistence of perfect \begin{document}$ t $\end{document}-error-correcting codes in \begin{document}$ S_n $\end{document} under the Hamming metric, for more values of \begin{document}$ n $\end{document} and \begin{document}$ t $\end{document}. Specifically, we propose some sufficient conditions of the nonexistence of perfect permutation codes. Further, we prove that there does not exist a perfect \begin{document}$ t $\end{document}-error-correcting code in \begin{document}$ S_n $\end{document} under the Hamming metric for some \begin{document}$ n $\end{document} and \begin{document}$ t = 1,2,3,4 $\end{document}, or \begin{document}$ 2t+1\leq n\leq \max\{4t^2e^{-2+1/t}-2,2t+1\} $\end{document} for \begin{document}$ t\geq 2 $\end{document}, or \begin{document}$ \min\{\frac{e}{2}\sqrt{n+2},\lfloor\frac{n-1}{2}\rfloor\}\leq t\leq \lfloor\frac{n-1}{2}\rfloor $\end{document} for \begin{document}$ n\geq 7 $\end{document}, where \begin{document}$ e $\end{document} is the Napier's constant.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.