基于非局部随机移动的PageRank中心性

IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
David Bowater, E. Stefanakis
{"title":"基于非局部随机移动的PageRank中心性","authors":"David Bowater, E. Stefanakis","doi":"10.1093/comnet/cnad024","DOIUrl":null,"url":null,"abstract":"\n PageRank is a popular measure of centrality that is often applied to rank nodes in real-world networks. However, in many cases, the notion of teleportation is counterintuitive because it implies that whatever is moving around the network will jump or ‘teleport’ directly from one node to any other, without considering how far apart the nodes are. To overcome this issue, we propose here a general measure of PageRank centrality whereby the teleportation probabilities depend, in some way, on the distance separating the nodes. We accomplish this by drawing upon recent advances in non-local random walks, which allow the proposed measure to be tailored for various real-world networks and applications. To illustrate the flexibility of the proposed measure and to demonstrate how it differs from PageRank centrality, we present and discuss experimental results for a selection of real-world spatial and social networks, including an air transportation network, a collaboration network and an urban street network.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PageRank centrality with non-local random walk-based teleportation\",\"authors\":\"David Bowater, E. Stefanakis\",\"doi\":\"10.1093/comnet/cnad024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n PageRank is a popular measure of centrality that is often applied to rank nodes in real-world networks. However, in many cases, the notion of teleportation is counterintuitive because it implies that whatever is moving around the network will jump or ‘teleport’ directly from one node to any other, without considering how far apart the nodes are. To overcome this issue, we propose here a general measure of PageRank centrality whereby the teleportation probabilities depend, in some way, on the distance separating the nodes. We accomplish this by drawing upon recent advances in non-local random walks, which allow the proposed measure to be tailored for various real-world networks and applications. To illustrate the flexibility of the proposed measure and to demonstrate how it differs from PageRank centrality, we present and discuss experimental results for a selection of real-world spatial and social networks, including an air transportation network, a collaboration network and an urban street network.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnad024\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnad024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

PageRank是一种流行的中心性度量,通常用于对现实世界网络中的节点进行排名。然而,在许多情况下,隐形传态的概念是违反直觉的,因为它意味着任何在网络上移动的东西都会直接从一个节点跳到另一个节点,而不考虑节点之间的距离。为了克服这个问题,我们在这里提出了一个通用的PageRank中心性度量,其中隐形传态概率在某种程度上取决于节点之间的距离。我们通过借鉴非局部随机漫步的最新进展来实现这一目标,这使得所提出的措施能够针对各种现实世界的网络和应用进行定制。为了说明所提议措施的灵活性,并展示它与PageRank中心性的不同之处,我们提出并讨论了一系列现实世界空间和社会网络的实验结果,包括航空运输网络、协作网络和城市街道网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PageRank centrality with non-local random walk-based teleportation
PageRank is a popular measure of centrality that is often applied to rank nodes in real-world networks. However, in many cases, the notion of teleportation is counterintuitive because it implies that whatever is moving around the network will jump or ‘teleport’ directly from one node to any other, without considering how far apart the nodes are. To overcome this issue, we propose here a general measure of PageRank centrality whereby the teleportation probabilities depend, in some way, on the distance separating the nodes. We accomplish this by drawing upon recent advances in non-local random walks, which allow the proposed measure to be tailored for various real-world networks and applications. To illustrate the flexibility of the proposed measure and to demonstrate how it differs from PageRank centrality, we present and discuss experimental results for a selection of real-world spatial and social networks, including an air transportation network, a collaboration network and an urban street network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of complex networks
Journal of complex networks MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.20
自引率
9.50%
发文量
40
期刊介绍: Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信