并行高效有限元解的部分顺序预条件

M.C. Dracopoulos, M.A. Crisfield
{"title":"并行高效有限元解的部分顺序预条件","authors":"M.C. Dracopoulos,&nbsp;M.A. Crisfield","doi":"10.1016/0956-0521(95)00052-6","DOIUrl":null,"url":null,"abstract":"<div><p>A coarse/fine mesh preconditioner is presented which can be successfully applied in a parallel finite element context. The proposed method involves the reconstruction of the stiffness equations using a coarse/fine mesh idealisation with relative degrees-of-freedom derived directly from the element shape functions. This approach leads naturally to an effective preconditioner which only requires a direct solution on coarse mesh variables and which is implemented sequentially. On the other hand, the preconditioning of the fine mesh variables involves a perfectly parallelizable diagonal scaling. The proposed derivation of the coarse/fine mesh discretization via the use of transformation matrices can be very efficient and is directly applicable to existing finite elememt solution procedures.</p></div>","PeriodicalId":100325,"journal":{"name":"Computing Systems in Engineering","volume":"6 6","pages":"Pages 549-561"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-0521(95)00052-6","citationCount":"0","resultStr":"{\"title\":\"A partially sequential preconditioner for a parallel and efficent finite element solution\",\"authors\":\"M.C. Dracopoulos,&nbsp;M.A. Crisfield\",\"doi\":\"10.1016/0956-0521(95)00052-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A coarse/fine mesh preconditioner is presented which can be successfully applied in a parallel finite element context. The proposed method involves the reconstruction of the stiffness equations using a coarse/fine mesh idealisation with relative degrees-of-freedom derived directly from the element shape functions. This approach leads naturally to an effective preconditioner which only requires a direct solution on coarse mesh variables and which is implemented sequentially. On the other hand, the preconditioning of the fine mesh variables involves a perfectly parallelizable diagonal scaling. The proposed derivation of the coarse/fine mesh discretization via the use of transformation matrices can be very efficient and is directly applicable to existing finite elememt solution procedures.</p></div>\",\"PeriodicalId\":100325,\"journal\":{\"name\":\"Computing Systems in Engineering\",\"volume\":\"6 6\",\"pages\":\"Pages 549-561\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0956-0521(95)00052-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing Systems in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0956052195000526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing Systems in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0956052195000526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种可成功应用于并行有限元环境的粗/细网格预调节器。所提出的方法包括使用粗/细网格理想化和直接从单元形状函数导出的相对自由度来重建刚度方程。这种方法自然导致了一个有效的预条件,它只需要粗网格变量的直接解,并且是顺序实现的。另一方面,精细网格变量的预处理涉及一个完全可并行的对角缩放。本文提出的利用变换矩阵推导粗/细网格离散化的方法非常有效,可直接适用于现有的有限元求解程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A partially sequential preconditioner for a parallel and efficent finite element solution

A coarse/fine mesh preconditioner is presented which can be successfully applied in a parallel finite element context. The proposed method involves the reconstruction of the stiffness equations using a coarse/fine mesh idealisation with relative degrees-of-freedom derived directly from the element shape functions. This approach leads naturally to an effective preconditioner which only requires a direct solution on coarse mesh variables and which is implemented sequentially. On the other hand, the preconditioning of the fine mesh variables involves a perfectly parallelizable diagonal scaling. The proposed derivation of the coarse/fine mesh discretization via the use of transformation matrices can be very efficient and is directly applicable to existing finite elememt solution procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信