完全不连通集合的超空间

Pub Date : 2020-06-12 DOI:10.3336/gm.55.1.10
R. Escobedo, P. Pellicer-Covarrubias, V. Sánchez-Gutiérrez
{"title":"完全不连通集合的超空间","authors":"R. Escobedo, P. Pellicer-Covarrubias, V. Sánchez-Gutiérrez","doi":"10.3336/gm.55.1.10","DOIUrl":null,"url":null,"abstract":"In this paper we study the hyperspace of all nonempty closed totally disconnected subsets of a space, equipped with the Vietoris topology. We show results of compactness, connectedness and local connectedness for this hyperspace. We also include a study of path connectedness, particularly we prove that for a smooth dendroid this hyperspace is pathwise connected, and we present a general result which implies that for an Euclidean space this hyperspace has uncountably many arc components.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hyperspace of totally disconnected sets\",\"authors\":\"R. Escobedo, P. Pellicer-Covarrubias, V. Sánchez-Gutiérrez\",\"doi\":\"10.3336/gm.55.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the hyperspace of all nonempty closed totally disconnected subsets of a space, equipped with the Vietoris topology. We show results of compactness, connectedness and local connectedness for this hyperspace. We also include a study of path connectedness, particularly we prove that for a smooth dendroid this hyperspace is pathwise connected, and we present a general result which implies that for an Euclidean space this hyperspace has uncountably many arc components.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.55.1.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有Vietoris拓扑的空间中所有非空闭完全不连通子集的超空间。我们给出了这个超空间的紧性、连通性和局部连通性的结果。我们还研究了路径连通性,特别是证明了对于光滑树状体,该超空间是路径连通的,并给出了一个一般结果,该结果表明对于欧几里德空间,该超空间具有不可数的弧分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The hyperspace of totally disconnected sets
In this paper we study the hyperspace of all nonempty closed totally disconnected subsets of a space, equipped with the Vietoris topology. We show results of compactness, connectedness and local connectedness for this hyperspace. We also include a study of path connectedness, particularly we prove that for a smooth dendroid this hyperspace is pathwise connected, and we present a general result which implies that for an Euclidean space this hyperspace has uncountably many arc components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信