Oseen方程涡度/伯努利压力公式的误差分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Verónica Anaya, D. Mora, A. K. Pani, R. Ruiz-Baier
{"title":"Oseen方程涡度/伯努利压力公式的误差分析","authors":"Verónica Anaya, D. Mora, A. K. Pani, R. Ruiz-Baier","doi":"10.1515/jnma-2021-0053","DOIUrl":null,"url":null,"abstract":"Abstract A variational formulation is analysed for the Oseen equations written in terms of vorticity and Bernoulli pressure. The velocity is fully decoupled using the momentum balance equation, and it is later recovered by a post-process. A finite element method is also proposed, consisting in equal-order Nédélec finite elements and piecewise continuous polynomials for the vorticity and the Bernoulli pressure, respectively. The a priori error analysis is carried out in the L2-norm for vorticity, pressure, and velocity; under a smallness assumption either on the convecting velocity, or on the mesh parameter. Furthermore, an a posteriori error estimator is designed and its robustness and efficiency are studied using weighted norms. Finally, a set of numerical examples in 2D and 3D is given, where the error indicator serves to guide adaptive mesh refinement. These tests illustrate the behaviour of the new formulation in typical flow conditions, and also confirm the theoretical findings.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error analysis for a vorticity/Bernoulli pressure formulation for the Oseen equations\",\"authors\":\"Verónica Anaya, D. Mora, A. K. Pani, R. Ruiz-Baier\",\"doi\":\"10.1515/jnma-2021-0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A variational formulation is analysed for the Oseen equations written in terms of vorticity and Bernoulli pressure. The velocity is fully decoupled using the momentum balance equation, and it is later recovered by a post-process. A finite element method is also proposed, consisting in equal-order Nédélec finite elements and piecewise continuous polynomials for the vorticity and the Bernoulli pressure, respectively. The a priori error analysis is carried out in the L2-norm for vorticity, pressure, and velocity; under a smallness assumption either on the convecting velocity, or on the mesh parameter. Furthermore, an a posteriori error estimator is designed and its robustness and efficiency are studied using weighted norms. Finally, a set of numerical examples in 2D and 3D is given, where the error indicator serves to guide adaptive mesh refinement. These tests illustrate the behaviour of the new formulation in typical flow conditions, and also confirm the theoretical findings.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2021-0053\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0053","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要分析了用涡度和伯努利压力表示的Oseen方程的变分形式。使用动量平衡方程完全解耦速度,然后通过后处理恢复速度。提出了涡度和伯努利压力的等阶nsamdsamlec有限元法和分段连续多项式法。对涡度、压力和速度的l2范数进行了先验误差分析;在一个小的假设下,无论是对对流速度,还是对网格参数。设计了后验误差估计器,并利用加权范数研究了后验误差估计器的鲁棒性和有效性。最后,给出了一组二维和三维的数值算例,其中误差指标用于指导自适应网格细化。这些试验说明了新配方在典型流动条件下的性能,也证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analysis for a vorticity/Bernoulli pressure formulation for the Oseen equations
Abstract A variational formulation is analysed for the Oseen equations written in terms of vorticity and Bernoulli pressure. The velocity is fully decoupled using the momentum balance equation, and it is later recovered by a post-process. A finite element method is also proposed, consisting in equal-order Nédélec finite elements and piecewise continuous polynomials for the vorticity and the Bernoulli pressure, respectively. The a priori error analysis is carried out in the L2-norm for vorticity, pressure, and velocity; under a smallness assumption either on the convecting velocity, or on the mesh parameter. Furthermore, an a posteriori error estimator is designed and its robustness and efficiency are studied using weighted norms. Finally, a set of numerical examples in 2D and 3D is given, where the error indicator serves to guide adaptive mesh refinement. These tests illustrate the behaviour of the new formulation in typical flow conditions, and also confirm the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信