R3中的同调重构与化简

D. Attali, Ulrich Bauer, O. Devillers, M. Glisse, A. Lieutier
{"title":"R3中的同调重构与化简","authors":"D. Attali, Ulrich Bauer, O. Devillers, M. Glisse, A. Lieutier","doi":"10.1145/2462356.2462373","DOIUrl":null,"url":null,"abstract":"We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology of some complex H*(X) with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"13 1","pages":"606-621"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Homological reconstruction and simplification in R3\",\"authors\":\"D. Attali, Ulrich Bauer, O. Devillers, M. Glisse, A. Lieutier\",\"doi\":\"10.1145/2462356.2462373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology of some complex H*(X) with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.\",\"PeriodicalId\":11245,\"journal\":{\"name\":\"Discret. Comput. Geom.\",\"volume\":\"13 1\",\"pages\":\"606-621\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Comput. Geom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2462356.2462373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2462356.2462373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们考虑一个简单对(K,L)的持久同调群是否可以被实现为某些复H*(X)与L∧X∧K的同调的问题。我们证明了即使K嵌入在R3中,这个问题也是np完全的。因此,我们证明了在给定的容差约束下简化S3上的标量函数的级别和子级别集是np困难的。这个问题与医学图像的等值面可视化有关。给出了标量函数井群理论的一个启示:并不是每一个井群都可以用某个水平集来实现,决定一个井群是否可以被实现是np困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological reconstruction and simplification in R3
We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology of some complex H*(X) with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信