D. Attali, Ulrich Bauer, O. Devillers, M. Glisse, A. Lieutier
{"title":"R3中的同调重构与化简","authors":"D. Attali, Ulrich Bauer, O. Devillers, M. Glisse, A. Lieutier","doi":"10.1145/2462356.2462373","DOIUrl":null,"url":null,"abstract":"We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology of some complex H*(X) with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"13 1","pages":"606-621"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Homological reconstruction and simplification in R3\",\"authors\":\"D. Attali, Ulrich Bauer, O. Devillers, M. Glisse, A. Lieutier\",\"doi\":\"10.1145/2462356.2462373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology of some complex H*(X) with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.\",\"PeriodicalId\":11245,\"journal\":{\"name\":\"Discret. Comput. Geom.\",\"volume\":\"13 1\",\"pages\":\"606-621\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Comput. Geom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2462356.2462373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2462356.2462373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homological reconstruction and simplification in R3
We consider the problem of deciding whether the persistent homology group of a simplicial pair (K,L) can be realized as the homology of some complex H*(X) with L ⊂ X ⊂ K. We show that this problem is NP-complete even if K is embedded in R3. As a consequence, we show that it is NP-hard to simplify level and sublevel sets of scalar functions on S3 within a given tolerance constraint. This problem has relevance to the visualization of medical images by isosurfaces. We also show an implication to the theory of well groups of scalar functions: not every well group can be realized by some level set, and deciding whether a well group can be realized is NP-hard.