利用KLT辅助平均位移目标跟踪器进行目标跟踪(ICCAS 2014)

Sun-Ho Kim, Jungho Kim, Youngbae Hwang, Byoung-Tae Choi, J. Yoon
{"title":"利用KLT辅助平均位移目标跟踪器进行目标跟踪(ICCAS 2014)","authors":"Sun-Ho Kim, Jungho Kim, Youngbae Hwang, Byoung-Tae Choi, J. Yoon","doi":"10.1109/ICCAS.2014.6987974","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new object tracking algorithm which integrates color-based mean-shift and feature-based optical flow methods. To utilize two approaches in the complimentary manner, we iteratively compute the mean-shift vector based on color histograms and tracked features by KLT. In the experiments, we show the improved performance for partial occlusion and severe appearance changes in the representative benchmark sequences.","PeriodicalId":6525,"journal":{"name":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","volume":"65 1","pages":"140-145"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object tracking using KLT aided mean-shift object tracker (ICCAS 2014)\",\"authors\":\"Sun-Ho Kim, Jungho Kim, Youngbae Hwang, Byoung-Tae Choi, J. Yoon\",\"doi\":\"10.1109/ICCAS.2014.6987974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new object tracking algorithm which integrates color-based mean-shift and feature-based optical flow methods. To utilize two approaches in the complimentary manner, we iteratively compute the mean-shift vector based on color histograms and tracked features by KLT. In the experiments, we show the improved performance for partial occlusion and severe appearance changes in the representative benchmark sequences.\",\"PeriodicalId\":6525,\"journal\":{\"name\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"volume\":\"65 1\",\"pages\":\"140-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2014.6987974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2014.6987974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的目标跟踪算法,该算法将基于颜色的均值位移和基于特征的光流方法相结合。为了以互补的方式利用两种方法,我们基于颜色直方图和KLT跟踪特征迭代计算mean-shift向量。在实验中,我们在具有代表性的基准序列中展示了部分遮挡和严重外观变化的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object tracking using KLT aided mean-shift object tracker (ICCAS 2014)
In this paper, we present a new object tracking algorithm which integrates color-based mean-shift and feature-based optical flow methods. To utilize two approaches in the complimentary manner, we iteratively compute the mean-shift vector based on color histograms and tracked features by KLT. In the experiments, we show the improved performance for partial occlusion and severe appearance changes in the representative benchmark sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信