Gilad Arnold, J. Hölzl, A. Köksal, R. Bodík, Shmuel Sagiv
{"title":"指定和验证稀疏矩阵代码","authors":"Gilad Arnold, J. Hölzl, A. Köksal, R. Bodík, Shmuel Sagiv","doi":"10.1145/1863543.1863581","DOIUrl":null,"url":null,"abstract":"Sparse matrix formats are typically implemented with low-level imperative programs. The optimized nature of these implementations hides the structural organization of the sparse format and complicates its verification. We define a variable-free functional language (LL) in which even advanced formats can be expressed naturally, as a pipeline-style composition of smaller construction steps. We translate LL programs to Isabelle/HOL and describe a proof system based on parametric predicates for tracking relationship between mathematical vectors and their concrete representations. This proof theory automatically verifies full functional correctness of many formats. We show that it is reusable and extensible to hierarchical sparse formats.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"1 1","pages":"249-260"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Specifying and verifying sparse matrix codes\",\"authors\":\"Gilad Arnold, J. Hölzl, A. Köksal, R. Bodík, Shmuel Sagiv\",\"doi\":\"10.1145/1863543.1863581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse matrix formats are typically implemented with low-level imperative programs. The optimized nature of these implementations hides the structural organization of the sparse format and complicates its verification. We define a variable-free functional language (LL) in which even advanced formats can be expressed naturally, as a pipeline-style composition of smaller construction steps. We translate LL programs to Isabelle/HOL and describe a proof system based on parametric predicates for tracking relationship between mathematical vectors and their concrete representations. This proof theory automatically verifies full functional correctness of many formats. We show that it is reusable and extensible to hierarchical sparse formats.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"1 1\",\"pages\":\"249-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1863543.1863581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1863543.1863581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse matrix formats are typically implemented with low-level imperative programs. The optimized nature of these implementations hides the structural organization of the sparse format and complicates its verification. We define a variable-free functional language (LL) in which even advanced formats can be expressed naturally, as a pipeline-style composition of smaller construction steps. We translate LL programs to Isabelle/HOL and describe a proof system based on parametric predicates for tracking relationship between mathematical vectors and their concrete representations. This proof theory automatically verifies full functional correctness of many formats. We show that it is reusable and extensible to hierarchical sparse formats.