{"title":"华南密西西比系巨足类腕足类风暴壳层的古环境和古地理意义","authors":"L. Yao, M. Aretz, Yue Li, Xiangdong Wang","doi":"10.20341/GB.2015.021","DOIUrl":null,"url":null,"abstract":"1. IntroductionStorm beds are distinct facies criteria on shelves and ramps, which are generated by storm winds, such as cyclones and hurricanes in tropical latitudes and blizzards in middle and high latitudes (Tucker & Wright, 1990; Flugel, 2004). Ager (1973) defined storm beds as tempestites that are commonly characterized by sharp and erosional base, internal structures including accumulations of shells, graded and flat bedding and parallel and cross lamination, and ripple bedding and burrowing presented at the top part (Aigner, 1985; Flugel, 2004; Dattilo et al., 2012). Tempestites are abundant and widely distributed in carbonate environments during the Phanerozoic (e.g. Einsele & Seilacher, 1982; Flugel, 2004). The sedimentary patterns and biotic distributions of tempestites could provide important information in aspects of their depositional process, palaeoenvironment, palaeogeographical location and even stratigraphic comparison (Johnson, 1989; Lehman & Pope, 1989; Flugel, 2004; Jin et al., 2013). Storm shell beds, which are one common type of tempestites and featured by accumulation of shells, were documented during the icehouse periods of the late Ordovician (Lehman & Pope, 1989; Davis, 1999; Jin et al., 2013), early Silurian (Johnson, 1989; Li & Rong, 2007; Jin, 2008) and early Carboniferous (Jeffery & Aigner, 1982; Butts, 2005) and during greenhouse climate, as in the middle Ordovician (McFarland et al., 1999), late Permian (Simoes & Kowalewski, 1998), early Triass","PeriodicalId":12812,"journal":{"name":"Geologica Belgica","volume":"7 1","pages":"57-67"},"PeriodicalIF":1.2000,"publicationDate":"2016-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Gigantoproductid brachiopod storm shell beds in the Mississippian of South China: implications for their palaeoenvironmental and palaeogeographical significances\",\"authors\":\"L. Yao, M. Aretz, Yue Li, Xiangdong Wang\",\"doi\":\"10.20341/GB.2015.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1. IntroductionStorm beds are distinct facies criteria on shelves and ramps, which are generated by storm winds, such as cyclones and hurricanes in tropical latitudes and blizzards in middle and high latitudes (Tucker & Wright, 1990; Flugel, 2004). Ager (1973) defined storm beds as tempestites that are commonly characterized by sharp and erosional base, internal structures including accumulations of shells, graded and flat bedding and parallel and cross lamination, and ripple bedding and burrowing presented at the top part (Aigner, 1985; Flugel, 2004; Dattilo et al., 2012). Tempestites are abundant and widely distributed in carbonate environments during the Phanerozoic (e.g. Einsele & Seilacher, 1982; Flugel, 2004). The sedimentary patterns and biotic distributions of tempestites could provide important information in aspects of their depositional process, palaeoenvironment, palaeogeographical location and even stratigraphic comparison (Johnson, 1989; Lehman & Pope, 1989; Flugel, 2004; Jin et al., 2013). Storm shell beds, which are one common type of tempestites and featured by accumulation of shells, were documented during the icehouse periods of the late Ordovician (Lehman & Pope, 1989; Davis, 1999; Jin et al., 2013), early Silurian (Johnson, 1989; Li & Rong, 2007; Jin, 2008) and early Carboniferous (Jeffery & Aigner, 1982; Butts, 2005) and during greenhouse climate, as in the middle Ordovician (McFarland et al., 1999), late Permian (Simoes & Kowalewski, 1998), early Triass\",\"PeriodicalId\":12812,\"journal\":{\"name\":\"Geologica Belgica\",\"volume\":\"7 1\",\"pages\":\"57-67\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Belgica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.20341/GB.2015.021\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Belgica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.20341/GB.2015.021","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Gigantoproductid brachiopod storm shell beds in the Mississippian of South China: implications for their palaeoenvironmental and palaeogeographical significances
1. IntroductionStorm beds are distinct facies criteria on shelves and ramps, which are generated by storm winds, such as cyclones and hurricanes in tropical latitudes and blizzards in middle and high latitudes (Tucker & Wright, 1990; Flugel, 2004). Ager (1973) defined storm beds as tempestites that are commonly characterized by sharp and erosional base, internal structures including accumulations of shells, graded and flat bedding and parallel and cross lamination, and ripple bedding and burrowing presented at the top part (Aigner, 1985; Flugel, 2004; Dattilo et al., 2012). Tempestites are abundant and widely distributed in carbonate environments during the Phanerozoic (e.g. Einsele & Seilacher, 1982; Flugel, 2004). The sedimentary patterns and biotic distributions of tempestites could provide important information in aspects of their depositional process, palaeoenvironment, palaeogeographical location and even stratigraphic comparison (Johnson, 1989; Lehman & Pope, 1989; Flugel, 2004; Jin et al., 2013). Storm shell beds, which are one common type of tempestites and featured by accumulation of shells, were documented during the icehouse periods of the late Ordovician (Lehman & Pope, 1989; Davis, 1999; Jin et al., 2013), early Silurian (Johnson, 1989; Li & Rong, 2007; Jin, 2008) and early Carboniferous (Jeffery & Aigner, 1982; Butts, 2005) and during greenhouse climate, as in the middle Ordovician (McFarland et al., 1999), late Permian (Simoes & Kowalewski, 1998), early Triass
期刊介绍:
Geologica Belgica is a Belgian journal that welcomes papers concerning all aspects of the earth sciences, with a particular emphasis on the regional geology of Belgium, North West Europe and central Africa. Papers not dedicated to the geology of Belgium, North West Europe and central Africa are only accepted when one of the authors is linked to a Belgian University or Institution. Thematic issues are highly appreciated. In this case, guest editors take in charge the selection of the manuscripts and the subject of the papers can be enlarged. The journal is in open access.
Submitted manuscripts should be concise, presenting material not previously published. The journal also encourages the publication of papers from Belgian junior authors. Short letters are accepted. Papers written in English are preferred. Each mansucript will be reviewed by at least two reviewers.