自适应参数整流线性单元深度神经网络及其快速学习

Q3 Computer Science
Yevgeniy V. Bodyanskiy, A. Deineko, V. Škorík, Filip Brodetskyi
{"title":"自适应参数整流线性单元深度神经网络及其快速学习","authors":"Yevgeniy V. Bodyanskiy, A. Deineko, V. Škorík, Filip Brodetskyi","doi":"10.47839/ijc.21.1.2512","DOIUrl":null,"url":null,"abstract":"The adaptive parametric rectified linear unit (AdPReLU) as an activation function of the deep neural network is proposed in the article. The main benefit of the proposed system is adjusted activation function whose parameters are tuning parallel with synaptic weights in online mode. The algorithm of the simultaneous learning of all neurons parameters with AdPReLU and the modified backpropagation procedure based on this algorithm is introduced. The approach under consideration permits to reduce volume of the training data set and increase tuning speed of the DNN with AdPReLU. The proposed approach could be applied in the deep convolutional neural networks (CNN) in conditions of the small value of training data sets and additional requirements for system performance. The main feature of DNN under consideration is possibility to tune not only synaptic weights but the parameters of activation function too. The effectiveness of this approach is proved by experimental modeling.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Neural Network with Adaptive Parametric Rectified Linear Units and its Fast Learning\",\"authors\":\"Yevgeniy V. Bodyanskiy, A. Deineko, V. Škorík, Filip Brodetskyi\",\"doi\":\"10.47839/ijc.21.1.2512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adaptive parametric rectified linear unit (AdPReLU) as an activation function of the deep neural network is proposed in the article. The main benefit of the proposed system is adjusted activation function whose parameters are tuning parallel with synaptic weights in online mode. The algorithm of the simultaneous learning of all neurons parameters with AdPReLU and the modified backpropagation procedure based on this algorithm is introduced. The approach under consideration permits to reduce volume of the training data set and increase tuning speed of the DNN with AdPReLU. The proposed approach could be applied in the deep convolutional neural networks (CNN) in conditions of the small value of training data sets and additional requirements for system performance. The main feature of DNN under consideration is possibility to tune not only synaptic weights but the parameters of activation function too. The effectiveness of this approach is proved by experimental modeling.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.21.1.2512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.1.2512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

提出了自适应参数校正线性单元(AdPReLU)作为深度神经网络的激活函数。该系统的主要优点是可调整的激活函数,其参数在在线模式下与突触权并行调整。介绍了AdPReLU同时学习所有神经元参数的算法和基于该算法的改进反向传播过程。所考虑的方法允许减少训练数据集的体积,并使用AdPReLU提高DNN的调谐速度。本文提出的方法可以应用于深度卷积神经网络(CNN)中,在训练数据集值较小和对系统性能有额外要求的情况下。深度神经网络的主要特点是不仅可以调整突触权重,还可以调整激活函数的参数。实验模型验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neural Network with Adaptive Parametric Rectified Linear Units and its Fast Learning
The adaptive parametric rectified linear unit (AdPReLU) as an activation function of the deep neural network is proposed in the article. The main benefit of the proposed system is adjusted activation function whose parameters are tuning parallel with synaptic weights in online mode. The algorithm of the simultaneous learning of all neurons parameters with AdPReLU and the modified backpropagation procedure based on this algorithm is introduced. The approach under consideration permits to reduce volume of the training data set and increase tuning speed of the DNN with AdPReLU. The proposed approach could be applied in the deep convolutional neural networks (CNN) in conditions of the small value of training data sets and additional requirements for system performance. The main feature of DNN under consideration is possibility to tune not only synaptic weights but the parameters of activation function too. The effectiveness of this approach is proved by experimental modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computing
International Journal of Computing Computer Science-Computer Science (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
39
期刊介绍: The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信