向列液晶的Ericksen-Leslie模型的完备性

Daniel Coutand, Steve Shkoller
{"title":"向列液晶的Ericksen-Leslie模型的完备性","authors":"Daniel Coutand,&nbsp;Steve Shkoller","doi":"10.1016/S0764-4442(01)02161-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Ericksen–Leslie model of nematic liquid crystals is a coupled system between the Navier–Stokes and the Ginzburg–Landau equations. We show here the local well-posedness for this problem for any initial data regular enough, by a fixed point approach relying on some weak continuity properties in a suitable functional setting. By showing the existence of an appropriate local Lyapunov functional, we also give sufficient conditions for the global existence of the solution, and some stability conditions.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 10","pages":"Pages 919-924"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02161-9","citationCount":"1","resultStr":"{\"title\":\"Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals\",\"authors\":\"Daniel Coutand,&nbsp;Steve Shkoller\",\"doi\":\"10.1016/S0764-4442(01)02161-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Ericksen–Leslie model of nematic liquid crystals is a coupled system between the Navier–Stokes and the Ginzburg–Landau equations. We show here the local well-posedness for this problem for any initial data regular enough, by a fixed point approach relying on some weak continuity properties in a suitable functional setting. By showing the existence of an appropriate local Lyapunov functional, we also give sufficient conditions for the global existence of the solution, and some stability conditions.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 10\",\"pages\":\"Pages 919-924\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02161-9\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

向列液晶的Ericksen-Leslie模型是Navier-Stokes方程和Ginzburg-Landau方程之间的耦合系统。我们在这里展示了对于任何足够正则的初始数据,在一个合适的函数设置中,依靠一些弱连续性的不动点方法,这个问题的局部适定性。通过证明一个适当的局部Lyapunov泛函的存在性,给出了解的整体存在性的充分条件,以及一些稳定性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals

The Ericksen–Leslie model of nematic liquid crystals is a coupled system between the Navier–Stokes and the Ginzburg–Landau equations. We show here the local well-posedness for this problem for any initial data regular enough, by a fixed point approach relying on some weak continuity properties in a suitable functional setting. By showing the existence of an appropriate local Lyapunov functional, we also give sufficient conditions for the global existence of the solution, and some stability conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信