{"title":"二次算子生成的网络蠕虫传播的离散时间模型","authors":"F. Adilova, U. Jamilov, A. Reinfelds","doi":"10.3846/mma.2023.15999","DOIUrl":null,"url":null,"abstract":"In this paper we consider the discrete-time dynamical systems generated by network worm propagation models based on the theory of quadratic stochastic operators(QSO). This approach simultaneously solves two important problems: exploring of the QSO trajectory‘s behavior, we described the set of limit points, thereby completely solved the main problem of dynamical systems (i), we showed a new application of the theory QSOs in worm propagation modelling (ii). We demonstrated that proposed discrete-time biologically-inspired model represents also realistic picture of the worm propagation process and such analytical models can be used in decision of some problems of computer networks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On discrete-Time Models of Network Worm Propagation Generated by quadratic operators\",\"authors\":\"F. Adilova, U. Jamilov, A. Reinfelds\",\"doi\":\"10.3846/mma.2023.15999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the discrete-time dynamical systems generated by network worm propagation models based on the theory of quadratic stochastic operators(QSO). This approach simultaneously solves two important problems: exploring of the QSO trajectory‘s behavior, we described the set of limit points, thereby completely solved the main problem of dynamical systems (i), we showed a new application of the theory QSOs in worm propagation modelling (ii). We demonstrated that proposed discrete-time biologically-inspired model represents also realistic picture of the worm propagation process and such analytical models can be used in decision of some problems of computer networks.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.15999\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.15999","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On discrete-Time Models of Network Worm Propagation Generated by quadratic operators
In this paper we consider the discrete-time dynamical systems generated by network worm propagation models based on the theory of quadratic stochastic operators(QSO). This approach simultaneously solves two important problems: exploring of the QSO trajectory‘s behavior, we described the set of limit points, thereby completely solved the main problem of dynamical systems (i), we showed a new application of the theory QSOs in worm propagation modelling (ii). We demonstrated that proposed discrete-time biologically-inspired model represents also realistic picture of the worm propagation process and such analytical models can be used in decision of some problems of computer networks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.