一个灵活的模型来拟合过于分散的纵向计数数据

Q4 Mathematics
F. E. Salama, Ahmed M. Gad, A. A. E. Sheikh, A. M. Mohamed
{"title":"一个灵活的模型来拟合过于分散的纵向计数数据","authors":"F. E. Salama, Ahmed M. Gad, A. A. E. Sheikh, A. M. Mohamed","doi":"10.1080/23737484.2022.2073925","DOIUrl":null,"url":null,"abstract":"Abstract A common way to deal with count data is to fit a generalized linear model. The most common approaches are the Poisson regression model and the negative binomial regression model. However, Conway-Maxwell Poisson (COM-Poisson) regression model is more flexible to fit count data. This model has been widely used to describe under- or over-dispersion problem for count data in cross-sectional setting. However, there is no application of the COM-Poisson model in longitudinal data. We propose and develop the COM-Poisson regression model to fit longitudinal count data. We compare this model with the Poisson regression model and the negative binomial model, under two different working correlation structures; exchangeable and autoregressive of order 1, AR(1). The results show that the COM-Poisson model is very suitable to longitudinal count data, even in presence of dispersion; it gives the smallest AIC values. Also, it is insensitive to the choice of the working structure. Extensive simulation is conducted for small, moderate and large sample sizes, to evaluate the proposed model. The proposed approach has good results compared with other models using different criteria.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"29 2 1","pages":"407 - 422"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flexible model to fit over-dispersed longitudinal count data\",\"authors\":\"F. E. Salama, Ahmed M. Gad, A. A. E. Sheikh, A. M. Mohamed\",\"doi\":\"10.1080/23737484.2022.2073925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A common way to deal with count data is to fit a generalized linear model. The most common approaches are the Poisson regression model and the negative binomial regression model. However, Conway-Maxwell Poisson (COM-Poisson) regression model is more flexible to fit count data. This model has been widely used to describe under- or over-dispersion problem for count data in cross-sectional setting. However, there is no application of the COM-Poisson model in longitudinal data. We propose and develop the COM-Poisson regression model to fit longitudinal count data. We compare this model with the Poisson regression model and the negative binomial model, under two different working correlation structures; exchangeable and autoregressive of order 1, AR(1). The results show that the COM-Poisson model is very suitable to longitudinal count data, even in presence of dispersion; it gives the smallest AIC values. Also, it is insensitive to the choice of the working structure. Extensive simulation is conducted for small, moderate and large sample sizes, to evaluate the proposed model. The proposed approach has good results compared with other models using different criteria.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"29 2 1\",\"pages\":\"407 - 422\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2022.2073925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2022.2073925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

处理计数数据的一种常用方法是拟合广义线性模型。最常用的方法是泊松回归模型和负二项回归模型。然而,康威-麦克斯韦泊松(com -泊松)回归模型更灵活地拟合计数数据。该模型已被广泛用于描述横截面设置中计数数据的过分散或过分散问题。然而,com -泊松模型在纵向数据中没有应用。我们提出并发展了com -泊松回归模型来拟合纵向计数数据。在两种不同的工作相关结构下,将该模型与泊松回归模型和负二项模型进行比较;1阶可交换自回归,AR(1)。结果表明,COM-Poisson模型对纵向计数数据非常适用,即使存在色散;它给出最小的AIC值。此外,它对工作结构的选择不敏感。对小样本、中等样本和大样本进行了广泛的模拟,以评估所提出的模型。与采用不同准则的其他模型相比,该方法具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A flexible model to fit over-dispersed longitudinal count data
Abstract A common way to deal with count data is to fit a generalized linear model. The most common approaches are the Poisson regression model and the negative binomial regression model. However, Conway-Maxwell Poisson (COM-Poisson) regression model is more flexible to fit count data. This model has been widely used to describe under- or over-dispersion problem for count data in cross-sectional setting. However, there is no application of the COM-Poisson model in longitudinal data. We propose and develop the COM-Poisson regression model to fit longitudinal count data. We compare this model with the Poisson regression model and the negative binomial model, under two different working correlation structures; exchangeable and autoregressive of order 1, AR(1). The results show that the COM-Poisson model is very suitable to longitudinal count data, even in presence of dispersion; it gives the smallest AIC values. Also, it is insensitive to the choice of the working structure. Extensive simulation is conducted for small, moderate and large sample sizes, to evaluate the proposed model. The proposed approach has good results compared with other models using different criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信