{"title":"一种统一的概率方法来建模属性和对象之间的关系","authors":"Xiaoyang Wang, Q. Ji","doi":"10.1109/ICCV.2013.264","DOIUrl":null,"url":null,"abstract":"This paper proposes a unified probabilistic model to model the relationships between attributes and objects for attribute prediction and object recognition. As a list of semantically meaningful properties of objects, attributes generally relate to each other statistically. In this paper, we propose a unified probabilistic model to automatically discover and capture both the object-dependent and object-independent attribute relationships. The model utilizes the captured relationships to benefit both attribute prediction and object recognition. Experiments on four benchmark attribute datasets demonstrate the effectiveness of the proposed unified model for improving attribute prediction as well as object recognition in both standard and zero-shot learning cases.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"16 1","pages":"2120-2127"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"A Unified Probabilistic Approach Modeling Relationships between Attributes and Objects\",\"authors\":\"Xiaoyang Wang, Q. Ji\",\"doi\":\"10.1109/ICCV.2013.264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a unified probabilistic model to model the relationships between attributes and objects for attribute prediction and object recognition. As a list of semantically meaningful properties of objects, attributes generally relate to each other statistically. In this paper, we propose a unified probabilistic model to automatically discover and capture both the object-dependent and object-independent attribute relationships. The model utilizes the captured relationships to benefit both attribute prediction and object recognition. Experiments on four benchmark attribute datasets demonstrate the effectiveness of the proposed unified model for improving attribute prediction as well as object recognition in both standard and zero-shot learning cases.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"16 1\",\"pages\":\"2120-2127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Unified Probabilistic Approach Modeling Relationships between Attributes and Objects
This paper proposes a unified probabilistic model to model the relationships between attributes and objects for attribute prediction and object recognition. As a list of semantically meaningful properties of objects, attributes generally relate to each other statistically. In this paper, we propose a unified probabilistic model to automatically discover and capture both the object-dependent and object-independent attribute relationships. The model utilizes the captured relationships to benefit both attribute prediction and object recognition. Experiments on four benchmark attribute datasets demonstrate the effectiveness of the proposed unified model for improving attribute prediction as well as object recognition in both standard and zero-shot learning cases.