goes中Widmanstätten奥氏体的基本特征

Kryštof Hradečný, Renáta Palupčíková, A. Volodarskaja, V. Vodárek
{"title":"goes中Widmanstätten奥氏体的基本特征","authors":"Kryštof Hradečný, Renáta Palupčíková, A. Volodarskaja, V. Vodárek","doi":"10.37904/metal.2020.3505","DOIUrl":null,"url":null,"abstract":"Twin roll strip casting is an advanced technology for production of thin strips with the thickness of several millimetres. Recent progress in twin roll strip casting makes it possible to apply this technology for the production of grain oriented electrical steels (GOES). Optimization of technological processing of GOES using this revolutionary technology requires the detailed knowledge about microstructure evolution. Cooling of GOES thin strips in the  +  phase field is accompanied by the formation of austenite in the form of Widmanstätten laths. This paper summarises basic knowledge about the formation and subsequent decomposition of Widmanstätten austenite in GOES thin strips. Attention is paid to nucleation of Widmanstätten austenite, its growth in the matrix of -ferrite, pinning of austenite/ferrite interfaces by sulphides, the formation of epitaxial ferrite, partitioning of carbon and finally to the decomposition of Widmanstätten austenite either to pearlite or plate martensite. Phase transformations were studied by a combination of l ight microscopy, XRD, SEM + EBSD and TEM.","PeriodicalId":21337,"journal":{"name":"Revue De Metallurgie-cahiers D Informations Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basic Characteristics of Widmanstätten austenite in goes\",\"authors\":\"Kryštof Hradečný, Renáta Palupčíková, A. Volodarskaja, V. Vodárek\",\"doi\":\"10.37904/metal.2020.3505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twin roll strip casting is an advanced technology for production of thin strips with the thickness of several millimetres. Recent progress in twin roll strip casting makes it possible to apply this technology for the production of grain oriented electrical steels (GOES). Optimization of technological processing of GOES using this revolutionary technology requires the detailed knowledge about microstructure evolution. Cooling of GOES thin strips in the  +  phase field is accompanied by the formation of austenite in the form of Widmanstätten laths. This paper summarises basic knowledge about the formation and subsequent decomposition of Widmanstätten austenite in GOES thin strips. Attention is paid to nucleation of Widmanstätten austenite, its growth in the matrix of -ferrite, pinning of austenite/ferrite interfaces by sulphides, the formation of epitaxial ferrite, partitioning of carbon and finally to the decomposition of Widmanstätten austenite either to pearlite or plate martensite. Phase transformations were studied by a combination of l ight microscopy, XRD, SEM + EBSD and TEM.\",\"PeriodicalId\":21337,\"journal\":{\"name\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue De Metallurgie-cahiers D Informations Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双辊带钢连铸是生产几毫米厚薄带钢的先进技术。双辊带材连铸技术的最新进展使该技术应用于晶粒取向电工钢(go)的生产成为可能。利用这种革命性的技术优化氧化石墨烯的工艺处理需要详细了解微观结构的演变。氧化石墨烯薄带在+ 相场中冷却,同时形成以Widmanstätten条形式存在的奥氏体。本文综述了氧化石墨烯薄带中Widmanstätten奥氏体的形成及后续分解的基本知识。重点讨论了Widmanstätten奥氏体的形核、在片状铁素体基体中的生长、硫化物对奥氏体/铁素体界面的钉住、外延铁素体的形成、碳的分配以及最终Widmanstätten奥氏体分解为珠光体或片状马氏体。采用光学显微镜、XRD、SEM + EBSD和TEM等手段对其相变进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basic Characteristics of Widmanstätten austenite in goes
Twin roll strip casting is an advanced technology for production of thin strips with the thickness of several millimetres. Recent progress in twin roll strip casting makes it possible to apply this technology for the production of grain oriented electrical steels (GOES). Optimization of technological processing of GOES using this revolutionary technology requires the detailed knowledge about microstructure evolution. Cooling of GOES thin strips in the  +  phase field is accompanied by the formation of austenite in the form of Widmanstätten laths. This paper summarises basic knowledge about the formation and subsequent decomposition of Widmanstätten austenite in GOES thin strips. Attention is paid to nucleation of Widmanstätten austenite, its growth in the matrix of -ferrite, pinning of austenite/ferrite interfaces by sulphides, the formation of epitaxial ferrite, partitioning of carbon and finally to the decomposition of Widmanstätten austenite either to pearlite or plate martensite. Phase transformations were studied by a combination of l ight microscopy, XRD, SEM + EBSD and TEM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信