Ruan de Clercq, Ronald De Keulenaer, Pieter Maene, B. Preneel, B. D. Sutter, I. Verbauwhede
{"title":"安全代码存储体系结构","authors":"Ruan de Clercq, Ronald De Keulenaer, Pieter Maene, B. Preneel, B. D. Sutter, I. Verbauwhede","doi":"10.1145/3052973.3053044","DOIUrl":null,"url":null,"abstract":"An increasing number of applications implemented on a SoC (System-on-chip) require security features. This work addresses the issue of protecting the integrity of code and read-only data that is stored in memory. To this end, we propose a new architecture called SCM, which works as a standalone IP core in a SoC. To the best of our knowledge, there exists no architectural elements similar to SCM that offer the same strict security guarantees while, at the same time, not requiring any modifications to other IP cores in its SoC design. In addition, SCM has the flexibility to select the parts of the software to be protected, which eases the integration of our solution with existing software. The evaluation of SCM was done on the Zynq platform which features an ARM processor and an FPGA. The design was evaluated by executing a number of different benchmarks from memory protected by SCM, and we found that it introduces minimal overhead to the system.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SCM: Secure Code Memory Architecture\",\"authors\":\"Ruan de Clercq, Ronald De Keulenaer, Pieter Maene, B. Preneel, B. D. Sutter, I. Verbauwhede\",\"doi\":\"10.1145/3052973.3053044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing number of applications implemented on a SoC (System-on-chip) require security features. This work addresses the issue of protecting the integrity of code and read-only data that is stored in memory. To this end, we propose a new architecture called SCM, which works as a standalone IP core in a SoC. To the best of our knowledge, there exists no architectural elements similar to SCM that offer the same strict security guarantees while, at the same time, not requiring any modifications to other IP cores in its SoC design. In addition, SCM has the flexibility to select the parts of the software to be protected, which eases the integration of our solution with existing software. The evaluation of SCM was done on the Zynq platform which features an ARM processor and an FPGA. The design was evaluated by executing a number of different benchmarks from memory protected by SCM, and we found that it introduces minimal overhead to the system.\",\"PeriodicalId\":20540,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3052973.3053044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3053044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An increasing number of applications implemented on a SoC (System-on-chip) require security features. This work addresses the issue of protecting the integrity of code and read-only data that is stored in memory. To this end, we propose a new architecture called SCM, which works as a standalone IP core in a SoC. To the best of our knowledge, there exists no architectural elements similar to SCM that offer the same strict security guarantees while, at the same time, not requiring any modifications to other IP cores in its SoC design. In addition, SCM has the flexibility to select the parts of the software to be protected, which eases the integration of our solution with existing software. The evaluation of SCM was done on the Zynq platform which features an ARM processor and an FPGA. The design was evaluated by executing a number of different benchmarks from memory protected by SCM, and we found that it introduces minimal overhead to the system.