具有强竞争的竞争扩散平流系统的均匀Lipschitz界

IF 1 4区 数学
Tingwei Huang, Shan Zhang
{"title":"具有强竞争的竞争扩散平流系统的均匀Lipschitz界","authors":"Tingwei Huang, Shan Zhang","doi":"10.4236/AM.2021.125027","DOIUrl":null,"url":null,"abstract":"We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity results and covers the optimal case for this problem. The proof relies upon the blow-up technique and the almost monotonicity formula by Caffarelli, Jerison and Kenig.","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform Lipschitz Bound for a Competition Diffusion Advection System with Strong Competition\",\"authors\":\"Tingwei Huang, Shan Zhang\",\"doi\":\"10.4236/AM.2021.125027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity results and covers the optimal case for this problem. The proof relies upon the blow-up technique and the almost monotonicity formula by Caffarelli, Jerison and Kenig.\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4236/AM.2021.125027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4236/AM.2021.125027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了一类非线性椭圆系统解的一致Lipschitz界,该系统模拟了异质环境中竞争种群的稳态。这扩展了已知的准最优正则性结果,并涵盖了该问题的最优情况。这个证明依靠的是放大法和卡法雷利、杰里逊和凯尼格的几乎单调公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform Lipschitz Bound for a Competition Diffusion Advection System with Strong Competition
We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity results and covers the optimal case for this problem. The proof relies upon the blow-up technique and the almost monotonicity formula by Caffarelli, Jerison and Kenig.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信