计算图的无h方向

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Buci'c, Oliver Janzer, B. Sudakov
{"title":"计算图的无h方向","authors":"M. Buci'c, Oliver Janzer, B. Sudakov","doi":"10.1017/S0305004122000147","DOIUrl":null,"url":null,"abstract":"Abstract In 1974, Erdős posed the following problem. Given an oriented graph H, determine or estimate the maximum possible number of H-free orientations of an n-vertex graph. When H is a tournament, the answer was determined precisely for sufficiently large n by Alon and Yuster. In general, when the underlying undirected graph of H contains a cycle, one can obtain accurate bounds by combining an observation of Kozma and Moran with celebrated results on the number of F-free graphs. As the main contribution of the paper, we resolve all remaining cases in an asymptotic sense, thereby giving a rather complete answer to Erdős’s question. Moreover, we determine the answer exactly when H is an odd cycle and n is sufficiently large, answering a question of Araújo, Botler and Mota.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"20 1","pages":"79 - 95"},"PeriodicalIF":0.6000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Counting H-free orientations of graphs\",\"authors\":\"M. Buci'c, Oliver Janzer, B. Sudakov\",\"doi\":\"10.1017/S0305004122000147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In 1974, Erdős posed the following problem. Given an oriented graph H, determine or estimate the maximum possible number of H-free orientations of an n-vertex graph. When H is a tournament, the answer was determined precisely for sufficiently large n by Alon and Yuster. In general, when the underlying undirected graph of H contains a cycle, one can obtain accurate bounds by combining an observation of Kozma and Moran with celebrated results on the number of F-free graphs. As the main contribution of the paper, we resolve all remaining cases in an asymptotic sense, thereby giving a rather complete answer to Erdős’s question. Moreover, we determine the answer exactly when H is an odd cycle and n is sufficiently large, answering a question of Araújo, Botler and Mota.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"20 1\",\"pages\":\"79 - 95\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004122000147\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004122000147","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

1974年,Erdős提出了以下问题。给定一个有向图H,确定或估计n顶点图的无H方向的最大可能数。当H是一个锦标赛时,答案是由阿隆和尤斯特精确确定的,因为n足够大。一般来说,当H的底层无向图包含一个循环时,可以通过将Kozma和Moran的观察结果与关于F-free图数量的著名结果相结合来获得精确的界。作为本文的主要贡献,我们在渐近意义上解决了所有剩余的情况,从而对Erdős的问题给出了相当完整的答案。此外,当H是奇循环且n足够大时,我们准确地确定了答案,回答了Araújo, Botler和Mota的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting H-free orientations of graphs
Abstract In 1974, Erdős posed the following problem. Given an oriented graph H, determine or estimate the maximum possible number of H-free orientations of an n-vertex graph. When H is a tournament, the answer was determined precisely for sufficiently large n by Alon and Yuster. In general, when the underlying undirected graph of H contains a cycle, one can obtain accurate bounds by combining an observation of Kozma and Moran with celebrated results on the number of F-free graphs. As the main contribution of the paper, we resolve all remaining cases in an asymptotic sense, thereby giving a rather complete answer to Erdős’s question. Moreover, we determine the answer exactly when H is an odd cycle and n is sufficiently large, answering a question of Araújo, Botler and Mota.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信