实施海底油水分离的可行性研究方法

Guilherme Cosme Viganô
{"title":"实施海底油水分离的可行性研究方法","authors":"Guilherme Cosme Viganô","doi":"10.4043/29895-ms","DOIUrl":null,"url":null,"abstract":"\n Currently, low oil prices pose a challenge to the financial state of the industry. Therefore, it is very important that companies optimize costs while maintaining or even increasing oil production. At the same time, with oil production declining due high water cuts and facility volume limitations in an offshore production system, it is necessary to look for solutions in order to maintain economic viability by increasing oil recovery in mature reservoirs. Among some alternatives, the subsea separator represents a good prospect for dealing with these challenges.\n This paper aims to describe a methodology to perform the technical feasibility study of deploying an Oil/Water Subsea Separator in Brazilian Offshore Field. The technical results were then used as part of an economic analysis which is outside the scope of the present paper.\n The study is comprised four wells that are linked to the manifold and the subsea separator. In the subsea separator, 70% of the produced water is separated and reinjected in a disposal well. Hence, the fluids which remains (oil, gas and 30% of water) flows up to the platform. Since this reinjected water volume is not flowing to the platform anymore, more fluid can be processed, allowing the wells to operate on larger potentials resulting in an increased cumulative oil production to the field. Computational simulation approach was followed by using the pore flow simulation, flow assurance simulation and a coupler that integrates both of these.","PeriodicalId":11089,"journal":{"name":"Day 2 Wed, October 30, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methodology to a Feasibility Study to Implement an Oil/Water Subsea Separation\",\"authors\":\"Guilherme Cosme Viganô\",\"doi\":\"10.4043/29895-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Currently, low oil prices pose a challenge to the financial state of the industry. Therefore, it is very important that companies optimize costs while maintaining or even increasing oil production. At the same time, with oil production declining due high water cuts and facility volume limitations in an offshore production system, it is necessary to look for solutions in order to maintain economic viability by increasing oil recovery in mature reservoirs. Among some alternatives, the subsea separator represents a good prospect for dealing with these challenges.\\n This paper aims to describe a methodology to perform the technical feasibility study of deploying an Oil/Water Subsea Separator in Brazilian Offshore Field. The technical results were then used as part of an economic analysis which is outside the scope of the present paper.\\n The study is comprised four wells that are linked to the manifold and the subsea separator. In the subsea separator, 70% of the produced water is separated and reinjected in a disposal well. Hence, the fluids which remains (oil, gas and 30% of water) flows up to the platform. Since this reinjected water volume is not flowing to the platform anymore, more fluid can be processed, allowing the wells to operate on larger potentials resulting in an increased cumulative oil production to the field. Computational simulation approach was followed by using the pore flow simulation, flow assurance simulation and a coupler that integrates both of these.\",\"PeriodicalId\":11089,\"journal\":{\"name\":\"Day 2 Wed, October 30, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 30, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29895-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 30, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29895-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,低油价对该行业的财务状况构成了挑战。因此,公司在保持甚至增加石油产量的同时优化成本是非常重要的。与此同时,由于海上生产系统的高含水率和设备体积限制,石油产量下降,有必要通过提高成熟油藏的采收率来寻找解决方案,以保持经济可行性。在一些替代方案中,海底分离器代表了应对这些挑战的良好前景。本文旨在描述在巴西海上油田部署油水水下分离器的技术可行性研究方法。然后将技术结果用作经济分析的一部分,这超出了本文的范围。该研究包括四口井,这些井连接到管汇和海底分离器。在海底分离器中,70%的产出水被分离并重新注入处置井。因此,剩余的流体(油、气和30%的水)会流向平台。由于这些回注水量不再流入平台,因此可以处理更多的流体,从而使油井能够以更大的潜力运行,从而增加油田的累计产油量。采用计算模拟方法,采用孔隙流动模拟、流动保证模拟以及将两者集成在一起的耦合器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methodology to a Feasibility Study to Implement an Oil/Water Subsea Separation
Currently, low oil prices pose a challenge to the financial state of the industry. Therefore, it is very important that companies optimize costs while maintaining or even increasing oil production. At the same time, with oil production declining due high water cuts and facility volume limitations in an offshore production system, it is necessary to look for solutions in order to maintain economic viability by increasing oil recovery in mature reservoirs. Among some alternatives, the subsea separator represents a good prospect for dealing with these challenges. This paper aims to describe a methodology to perform the technical feasibility study of deploying an Oil/Water Subsea Separator in Brazilian Offshore Field. The technical results were then used as part of an economic analysis which is outside the scope of the present paper. The study is comprised four wells that are linked to the manifold and the subsea separator. In the subsea separator, 70% of the produced water is separated and reinjected in a disposal well. Hence, the fluids which remains (oil, gas and 30% of water) flows up to the platform. Since this reinjected water volume is not flowing to the platform anymore, more fluid can be processed, allowing the wells to operate on larger potentials resulting in an increased cumulative oil production to the field. Computational simulation approach was followed by using the pore flow simulation, flow assurance simulation and a coupler that integrates both of these.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信