神经网络工具在过程挖掘中的应用

Pub Date : 2023-01-01 DOI:10.36244/icj.2023.5.3
László Kovács, Erika Baksáné Varga, Péter Mileff
{"title":"神经网络工具在过程挖掘中的应用","authors":"László Kovács, Erika Baksáné Varga, Péter Mileff","doi":"10.36244/icj.2023.5.3","DOIUrl":null,"url":null,"abstract":"Dominant current technologies in process mining use schema induction approaches based on graph and au- tomaton methods. The paper investigates the application of neural network approaches in schema induction focusing on three alternative architectures: MLP, CNN and LSTM networks. The proposed neural network models can be used to discover XOR, loop and parallel execution templates. In the case of loop detection, the performed test analyses show the dominance of CNN approach where the string is represented with a two- dimensional similarity matrix. The usability of the proposed approach is demonstrated with test examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Neural Network Tools in Process Mining\",\"authors\":\"László Kovács, Erika Baksáné Varga, Péter Mileff\",\"doi\":\"10.36244/icj.2023.5.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dominant current technologies in process mining use schema induction approaches based on graph and au- tomaton methods. The paper investigates the application of neural network approaches in schema induction focusing on three alternative architectures: MLP, CNN and LSTM networks. The proposed neural network models can be used to discover XOR, loop and parallel execution templates. In the case of loop detection, the performed test analyses show the dominance of CNN approach where the string is represented with a two- dimensional similarity matrix. The usability of the proposed approach is demonstrated with test examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36244/icj.2023.5.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2023.5.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前流程挖掘的主要技术是基于图和自动机的模式归纳方法。本文研究了神经网络方法在模式归纳中的应用,重点研究了三种可选架构:MLP、CNN和LSTM网络。所提出的神经网络模型可用于发现异或、循环和并行执行模板。在环路检测的情况下,执行的测试分析显示了CNN方法的优势,其中字符串用二维相似矩阵表示。通过测试实例验证了该方法的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Application of Neural Network Tools in Process Mining
Dominant current technologies in process mining use schema induction approaches based on graph and au- tomaton methods. The paper investigates the application of neural network approaches in schema induction focusing on three alternative architectures: MLP, CNN and LSTM networks. The proposed neural network models can be used to discover XOR, loop and parallel execution templates. In the case of loop detection, the performed test analyses show the dominance of CNN approach where the string is represented with a two- dimensional similarity matrix. The usability of the proposed approach is demonstrated with test examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信