非牛顿铁磁流体短轴颈轴承的润滑性能

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
J. Lin, Po-Jui Li, T. Hung
{"title":"非牛顿铁磁流体短轴颈轴承的润滑性能","authors":"J. Lin, Po-Jui Li, T. Hung","doi":"10.5560/ZNA.2012-0114","DOIUrl":null,"url":null,"abstract":"The lubrication performances of short journal bearings operating with non-Newtonian ferrofluids have been investigated in the present study. Based upon the ferrofluid model of Shliomis and the micro-continuum theory of Stokes, a two-dimensional modified Reynolds equation is derived by taking into account the effects of rotation of ferromagnetic particles and the effects of non-Newtonian properties. As an application, the short-bearing approximation is illustrated. Comparing with the conventional non-ferrofluid case, the short journal bearings with ferrofluids in the presence of magnetic fields result in a higher load capacity. Comparing with the Newtonian ferrofluid case, the non-Newtonian effects of couple stresses provide an enhancement in the load capacity, as well as a reduction in the friction parameter. The inclusion of non-Newtonian couple stresses signifies an improvement in performance characteristics of ferrofluid journal bearings.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2013-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Lubrication Performances of Short Journal Bearings Operating with Non-Newtonian Ferrofluids\",\"authors\":\"J. Lin, Po-Jui Li, T. Hung\",\"doi\":\"10.5560/ZNA.2012-0114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lubrication performances of short journal bearings operating with non-Newtonian ferrofluids have been investigated in the present study. Based upon the ferrofluid model of Shliomis and the micro-continuum theory of Stokes, a two-dimensional modified Reynolds equation is derived by taking into account the effects of rotation of ferromagnetic particles and the effects of non-Newtonian properties. As an application, the short-bearing approximation is illustrated. Comparing with the conventional non-ferrofluid case, the short journal bearings with ferrofluids in the presence of magnetic fields result in a higher load capacity. Comparing with the Newtonian ferrofluid case, the non-Newtonian effects of couple stresses provide an enhancement in the load capacity, as well as a reduction in the friction parameter. The inclusion of non-Newtonian couple stresses signifies an improvement in performance characteristics of ferrofluid journal bearings.\",\"PeriodicalId\":54395,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2013-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5560/ZNA.2012-0114\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5560/ZNA.2012-0114","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 13

摘要

本文研究了非牛顿铁磁流体作用下短轴颈轴承的润滑性能。基于Shliomis的铁磁流体模型和Stokes的微连续统理论,推导了考虑铁磁粒子旋转效应和非牛顿性质影响的二维修正Reynolds方程。作为一个应用,说明了短方位近似。与传统的非铁磁流体情况相比,具有磁场存在的铁磁流体短轴颈轴承具有更高的承载能力。与牛顿铁磁流体情况相比,耦合应力的非牛顿效应提高了载荷能力,并降低了摩擦参数。非牛顿耦合应力的加入表明铁磁流体滑动轴承的性能特性得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lubrication Performances of Short Journal Bearings Operating with Non-Newtonian Ferrofluids
The lubrication performances of short journal bearings operating with non-Newtonian ferrofluids have been investigated in the present study. Based upon the ferrofluid model of Shliomis and the micro-continuum theory of Stokes, a two-dimensional modified Reynolds equation is derived by taking into account the effects of rotation of ferromagnetic particles and the effects of non-Newtonian properties. As an application, the short-bearing approximation is illustrated. Comparing with the conventional non-ferrofluid case, the short journal bearings with ferrofluids in the presence of magnetic fields result in a higher load capacity. Comparing with the Newtonian ferrofluid case, the non-Newtonian effects of couple stresses provide an enhancement in the load capacity, as well as a reduction in the friction parameter. The inclusion of non-Newtonian couple stresses signifies an improvement in performance characteristics of ferrofluid journal bearings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
81
审稿时长
3.3 months
期刊介绍: A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. Authors are encouraged to pay particular attention to a clear exposition of their respective subject, addressing a wide readership. In accordance with the name of our journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena. In particular, we welcome experiment-oriented contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信