N. Gromov, Тatiana B. Medvedeva, I. A. Lukoyanov, A. A. Zhdanok, V. A. Poluboyarov, Оxana P. Тaran, V. Parmon, M. Timofeeva
{"title":"基于碳化钨的一锅水解-纤维素氢解制备乙二醇和1,2-丙二醇材料的自蔓延高温合成","authors":"N. Gromov, Тatiana B. Medvedeva, I. A. Lukoyanov, A. A. Zhdanok, V. A. Poluboyarov, Оxana P. Тaran, V. Parmon, M. Timofeeva","doi":"10.17516/1998-2836-0125","DOIUrl":null,"url":null,"abstract":"Catalytic systems based on tungsten carbide (WnC) containing mainly W2C were obtained by the method of self-propagating high-temperature synthesis from a mechanochemically activated mixture of tungsten oxide, metallic magnesium, carbon black and CaCO3. The phase composition of the formed materials was shown to depend on the amount of CaCO3. The catalytic properties of the materials were tested in the hydrolysis-hydrogenation of cellulose to ethylene glycol (EG) and 1,2-propylene glycol (PG). It was established that in the presence of WnC the main products of the reaction were EG and PG with a ratio of PG/EG – 1.5-1.8. The deposition of nickel nanoparticles on the WnC surface increased the reaction rate and product yields. The maximum total yield of diols was 47.1 mol. %.","PeriodicalId":16999,"journal":{"name":"Journal of Siberian Federal University. Chemistry","volume":"272 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-propagating High-temperature Synthesis of Materials Based on Tungsten Carbide for One-Pot Hydrolysis-Hydrogenolysis of Cellulose Into Ethylene Glycol and 1,2-Propylene Glycol\",\"authors\":\"N. Gromov, Тatiana B. Medvedeva, I. A. Lukoyanov, A. A. Zhdanok, V. A. Poluboyarov, Оxana P. Тaran, V. Parmon, M. Timofeeva\",\"doi\":\"10.17516/1998-2836-0125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catalytic systems based on tungsten carbide (WnC) containing mainly W2C were obtained by the method of self-propagating high-temperature synthesis from a mechanochemically activated mixture of tungsten oxide, metallic magnesium, carbon black and CaCO3. The phase composition of the formed materials was shown to depend on the amount of CaCO3. The catalytic properties of the materials were tested in the hydrolysis-hydrogenation of cellulose to ethylene glycol (EG) and 1,2-propylene glycol (PG). It was established that in the presence of WnC the main products of the reaction were EG and PG with a ratio of PG/EG – 1.5-1.8. The deposition of nickel nanoparticles on the WnC surface increased the reaction rate and product yields. The maximum total yield of diols was 47.1 mol. %.\",\"PeriodicalId\":16999,\"journal\":{\"name\":\"Journal of Siberian Federal University. Chemistry\",\"volume\":\"272 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1998-2836-0125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1998-2836-0125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-propagating High-temperature Synthesis of Materials Based on Tungsten Carbide for One-Pot Hydrolysis-Hydrogenolysis of Cellulose Into Ethylene Glycol and 1,2-Propylene Glycol
Catalytic systems based on tungsten carbide (WnC) containing mainly W2C were obtained by the method of self-propagating high-temperature synthesis from a mechanochemically activated mixture of tungsten oxide, metallic magnesium, carbon black and CaCO3. The phase composition of the formed materials was shown to depend on the amount of CaCO3. The catalytic properties of the materials were tested in the hydrolysis-hydrogenation of cellulose to ethylene glycol (EG) and 1,2-propylene glycol (PG). It was established that in the presence of WnC the main products of the reaction were EG and PG with a ratio of PG/EG – 1.5-1.8. The deposition of nickel nanoparticles on the WnC surface increased the reaction rate and product yields. The maximum total yield of diols was 47.1 mol. %.