一维晶格φ4理论中的对称、混沌和温度

K. Aoki
{"title":"一维晶格φ4理论中的对称、混沌和温度","authors":"K. Aoki","doi":"10.12921/cmst.2017.0000055","DOIUrl":null,"url":null,"abstract":"The symmetries of the minimal $\\phi^4$ theory on the lattice, and trajectories which are chaotic, yet restricted to motions within subspaces due to symmetry reasons, are systematically analyzed. The chaotic dynamics of autonomous Hamiltonian systems are discussed, in relation to the thermodynamic laws. Possibilities of configurations with non-equal ideal gas temperatures in the steady state are investigated. The pairing of local (finite-time) Lyapunov exponents are analyzed, and their dependence on various factors, such as energy of the system, characteristics of the initial conditions are studied.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Symmetry, Chaos and Temperature in the One-dimensional Lattice φ4 Theory\",\"authors\":\"K. Aoki\",\"doi\":\"10.12921/cmst.2017.0000055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The symmetries of the minimal $\\\\phi^4$ theory on the lattice, and trajectories which are chaotic, yet restricted to motions within subspaces due to symmetry reasons, are systematically analyzed. The chaotic dynamics of autonomous Hamiltonian systems are discussed, in relation to the thermodynamic laws. Possibilities of configurations with non-equal ideal gas temperatures in the steady state are investigated. The pairing of local (finite-time) Lyapunov exponents are analyzed, and their dependence on various factors, such as energy of the system, characteristics of the initial conditions are studied.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/cmst.2017.0000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/cmst.2017.0000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

系统地分析了最小$\phi^4$理论在晶格上的对称性,以及由于对称原因而限制在子空间内运动的混沌轨迹。从热力学定律的角度讨论了自治哈密顿系统的混沌动力学。研究了稳态条件下理想气体温度不相等的构型的可能性。分析了局部(有限时间)Lyapunov指数的配对,研究了它们对系统能量、初始条件特征等因素的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry, Chaos and Temperature in the One-dimensional Lattice φ4 Theory
The symmetries of the minimal $\phi^4$ theory on the lattice, and trajectories which are chaotic, yet restricted to motions within subspaces due to symmetry reasons, are systematically analyzed. The chaotic dynamics of autonomous Hamiltonian systems are discussed, in relation to the thermodynamic laws. Possibilities of configurations with non-equal ideal gas temperatures in the steady state are investigated. The pairing of local (finite-time) Lyapunov exponents are analyzed, and their dependence on various factors, such as energy of the system, characteristics of the initial conditions are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信