利用神经网络识别冠状动脉内光学图像中的动脉粥样硬化斑块

M. Macedo, Dario Augusto Borges Oliveira, M. A. Gutierrez
{"title":"利用神经网络识别冠状动脉内光学图像中的动脉粥样硬化斑块","authors":"M. Macedo, Dario Augusto Borges Oliveira, M. A. Gutierrez","doi":"10.23919/CinC49843.2019.9005679","DOIUrl":null,"url":null,"abstract":"Coronary artery disease (CAD) is intrinsically related to presence of atherosclerotic plaques. The rupture of this plaques is responsible for most acute coronary events. Intracoronary optical coherence tomography (IOCT) enables a detailed high-resolution visualization of micro-structural changes of the arterial wall in vivo. In this paper, we introduce a new way of identifying atherosclerotic plaques using 1D Convolutional Neural Networks (CNN) analyzing only the lumen contour. Training and test were performed with 1600 IOCT frames from in vivo patients. In our tests, we achieved f1-score of 95% for atherosclerotic plaque recognition. The results allow us to report an interesting correlation between the lumen contour geometry and the presence of plaques in the vascular wall observed through IOCT exams. The use of lumen contour for plaque detection opens two new perspectives: assisting specialists in the task of detecting plaques visually by paying special attention to the lumen and allowing methods to work in real time to detect plaques using efficient methods that use less information and deliver accurate results.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"3 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atherosclerotic Plaques Recognition in Intracoronary Optical Images Using Neural Networks\",\"authors\":\"M. Macedo, Dario Augusto Borges Oliveira, M. A. Gutierrez\",\"doi\":\"10.23919/CinC49843.2019.9005679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronary artery disease (CAD) is intrinsically related to presence of atherosclerotic plaques. The rupture of this plaques is responsible for most acute coronary events. Intracoronary optical coherence tomography (IOCT) enables a detailed high-resolution visualization of micro-structural changes of the arterial wall in vivo. In this paper, we introduce a new way of identifying atherosclerotic plaques using 1D Convolutional Neural Networks (CNN) analyzing only the lumen contour. Training and test were performed with 1600 IOCT frames from in vivo patients. In our tests, we achieved f1-score of 95% for atherosclerotic plaque recognition. The results allow us to report an interesting correlation between the lumen contour geometry and the presence of plaques in the vascular wall observed through IOCT exams. The use of lumen contour for plaque detection opens two new perspectives: assisting specialists in the task of detecting plaques visually by paying special attention to the lumen and allowing methods to work in real time to detect plaques using efficient methods that use less information and deliver accurate results.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"3 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冠状动脉疾病(CAD)与动脉粥样硬化斑块的存在有着内在的联系。这些斑块的破裂是大多数急性冠状动脉事件的原因。冠状动脉内光学相干断层扫描(icoct)能够对体内动脉壁的微结构变化进行详细的高分辨率可视化。本文介绍了一种仅分析管腔轮廓的一维卷积神经网络(CNN)识别动脉粥样硬化斑块的新方法。训练和测试用体内患者的1600个icoct框架进行。在我们的测试中,我们在动脉粥样硬化斑块识别方面达到了95%的f1分。结果允许我们报告通过IOCT检查观察到的管腔轮廓几何形状与血管壁斑块存在之间的有趣相关性。使用管腔轮廓进行斑块检测开辟了两个新的视角:通过特别关注管腔,帮助专家在视觉上检测斑块,并允许方法实时工作,使用更少的信息和提供准确的结果的有效方法来检测斑块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atherosclerotic Plaques Recognition in Intracoronary Optical Images Using Neural Networks
Coronary artery disease (CAD) is intrinsically related to presence of atherosclerotic plaques. The rupture of this plaques is responsible for most acute coronary events. Intracoronary optical coherence tomography (IOCT) enables a detailed high-resolution visualization of micro-structural changes of the arterial wall in vivo. In this paper, we introduce a new way of identifying atherosclerotic plaques using 1D Convolutional Neural Networks (CNN) analyzing only the lumen contour. Training and test were performed with 1600 IOCT frames from in vivo patients. In our tests, we achieved f1-score of 95% for atherosclerotic plaque recognition. The results allow us to report an interesting correlation between the lumen contour geometry and the presence of plaques in the vascular wall observed through IOCT exams. The use of lumen contour for plaque detection opens two new perspectives: assisting specialists in the task of detecting plaques visually by paying special attention to the lumen and allowing methods to work in real time to detect plaques using efficient methods that use less information and deliver accurate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信