具有稳定平凡高斯映射的拉格朗日同伦球的焦散性

Pub Date : 2021-05-12 DOI:10.4310/jsg.2022.v20.n5.a1
Daniel Álvarez-Gavela, David Darrow
{"title":"具有稳定平凡高斯映射的拉格朗日同伦球的焦散性","authors":"Daniel Álvarez-Gavela, David Darrow","doi":"10.4310/jsg.2022.v20.n5.a1","DOIUrl":null,"url":null,"abstract":"For each positive integer $n$, we give a geometric description of the stably trivial elements of the group $\\pi_n U_n/O_n$. In particular, we show that all such elements admit representatives whose tangencies with respect to a fixed Lagrangian plane consist only of folds. By the h-principle for the simplification of caustics, this has the following consequence: if a Lagrangian distribution is stably trivial from the viewpoint of a Lagrangian homotopy sphere, then by an ambient Hamiltonian isotopy one may deform the Lagrangian homotopy sphere so that its tangencies with respect to the Lagrangian distribution are only of fold type. Thus the stable triviality of the Lagrangian distribution, which is a necessary condition for the simplification of caustics to be possible, is also sufficient. We give applications of this result to the arborealization program and to the study of nearby Lagrangian homotopy spheres.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caustics of Lagrangian homotopy spheres with stably trivial Gauss map\",\"authors\":\"Daniel Álvarez-Gavela, David Darrow\",\"doi\":\"10.4310/jsg.2022.v20.n5.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For each positive integer $n$, we give a geometric description of the stably trivial elements of the group $\\\\pi_n U_n/O_n$. In particular, we show that all such elements admit representatives whose tangencies with respect to a fixed Lagrangian plane consist only of folds. By the h-principle for the simplification of caustics, this has the following consequence: if a Lagrangian distribution is stably trivial from the viewpoint of a Lagrangian homotopy sphere, then by an ambient Hamiltonian isotopy one may deform the Lagrangian homotopy sphere so that its tangencies with respect to the Lagrangian distribution are only of fold type. Thus the stable triviality of the Lagrangian distribution, which is a necessary condition for the simplification of caustics to be possible, is also sufficient. We give applications of this result to the arborealization program and to the study of nearby Lagrangian homotopy spheres.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n5.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n5.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个正整数$n$,我们给出了群$\pi_n U_n/O_n$的稳定平凡元的几何描述。特别地,我们证明了所有这样的元素都承认其相对于固定拉格朗日平面的切线仅由褶皱组成的表示。根据焦散化简的h原理,可以得到如下结论:如果从拉格朗日同伦球的观点来看,拉格朗日分布是稳定平凡的,那么通过环境哈密顿同位素,可以使拉格朗日同伦球变形,使其与拉格朗日分布的切线仅为折型。因此,拉格朗日分布的稳定平凡性也是充分的,这是焦散化简成为可能的必要条件。我们给出了这一结果在树实现程序和邻近拉格朗日同伦球的研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Caustics of Lagrangian homotopy spheres with stably trivial Gauss map
For each positive integer $n$, we give a geometric description of the stably trivial elements of the group $\pi_n U_n/O_n$. In particular, we show that all such elements admit representatives whose tangencies with respect to a fixed Lagrangian plane consist only of folds. By the h-principle for the simplification of caustics, this has the following consequence: if a Lagrangian distribution is stably trivial from the viewpoint of a Lagrangian homotopy sphere, then by an ambient Hamiltonian isotopy one may deform the Lagrangian homotopy sphere so that its tangencies with respect to the Lagrangian distribution are only of fold type. Thus the stable triviality of the Lagrangian distribution, which is a necessary condition for the simplification of caustics to be possible, is also sufficient. We give applications of this result to the arborealization program and to the study of nearby Lagrangian homotopy spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信