基于指纹识别的LoRa和深度学习的室内外定位

Jait Purohit, Xuyu Wang, S. Mao, Xiaoyan Sun, Chao Yang
{"title":"基于指纹识别的LoRa和深度学习的室内外定位","authors":"Jait Purohit, Xuyu Wang, S. Mao, Xiaoyan Sun, Chao Yang","doi":"10.1109/GLOBECOM42002.2020.9322261","DOIUrl":null,"url":null,"abstract":"This paper aims at predicting accurate outdoor and indoor locations using deep neural networks, for the data collected using the Long-Range Wide-Area Network (LoRaWAN) communication protocol. First, we propose an interpolation aided fingerprinting-based localization system architecture. We propose a deep autoencoder method to effectively deal with the large number of missing samples/outliers caused by the large size and wide coverage of LoRa networks. We also leverage three different deep learning models, i.e., the Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN), for fingerprinting based location regression. The superior localization performance of the proposed system is validated by our experimental study using a publicly available outdoor dataset and an indoor LoRa testbed.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fingerprinting-based Indoor and Outdoor Localization with LoRa and Deep Learning\",\"authors\":\"Jait Purohit, Xuyu Wang, S. Mao, Xiaoyan Sun, Chao Yang\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at predicting accurate outdoor and indoor locations using deep neural networks, for the data collected using the Long-Range Wide-Area Network (LoRaWAN) communication protocol. First, we propose an interpolation aided fingerprinting-based localization system architecture. We propose a deep autoencoder method to effectively deal with the large number of missing samples/outliers caused by the large size and wide coverage of LoRa networks. We also leverage three different deep learning models, i.e., the Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN), for fingerprinting based location regression. The superior localization performance of the proposed system is validated by our experimental study using a publicly available outdoor dataset and an indoor LoRa testbed.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"15 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文旨在利用远程广域网(LoRaWAN)通信协议收集的数据,利用深度神经网络预测准确的室外和室内位置。首先,我们提出了一种基于插值辅助指纹的定位系统架构。我们提出了一种深度自编码器方法来有效地处理由于LoRa网络规模大、覆盖范围广而导致的大量缺失样本/异常值。我们还利用了三种不同的深度学习模型,即人工神经网络(ANN)、长短期记忆(LSTM)和卷积神经网络(CNN),用于基于指纹的位置回归。我们使用公开的室外数据集和室内LoRa测试平台进行了实验研究,验证了所提出系统的优越定位性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fingerprinting-based Indoor and Outdoor Localization with LoRa and Deep Learning
This paper aims at predicting accurate outdoor and indoor locations using deep neural networks, for the data collected using the Long-Range Wide-Area Network (LoRaWAN) communication protocol. First, we propose an interpolation aided fingerprinting-based localization system architecture. We propose a deep autoencoder method to effectively deal with the large number of missing samples/outliers caused by the large size and wide coverage of LoRa networks. We also leverage three different deep learning models, i.e., the Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN), for fingerprinting based location regression. The superior localization performance of the proposed system is validated by our experimental study using a publicly available outdoor dataset and an indoor LoRa testbed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信