ULTRA:流动保证涂层技术-不同操作场景的产品组合

N. Cunha
{"title":"ULTRA:流动保证涂层技术-不同操作场景的产品组合","authors":"N. Cunha","doi":"10.4043/29772-ms","DOIUrl":null,"url":null,"abstract":"\n ULTRA™ is a novel and advanced flow assurance coating technology recently introduced in the Brazilian market for upcoming, and challenging, offshore projects expected in the next years. This coating technology has been used for over 9 years, and has been designed, applied and installed in offshore projects worldwide. Particularly over the last year, this thermal insulation system has been applied for a major project in Brazil. It is a thermal insulation system composed of fusion bonded epoxy and styrenic materials. A base 3-layer coating, followed by one or more insulation layers of solid or foamed styrene, and a high ductility outer shield were engineered to outperform some of existing solutions in terms of hydrostatic pressure, subsea stability, overall insulation thickness and associated installation costs. Application trials have been successfully performed to validate plant capabilities for applying the wide range of styrene-based system solutions, for shallow and deep waters. Test results demonstrated that foam and solid versions have a sweet spot in which the system outperforms similar to the wet insulation solutions existing in the Brazilian market. Its solid and foam systems demonstrated capability of delivering lower U - values (Overall Heat Transfer Coefficient) due to their lower thermal conductivity. The benefit of lower thermal conductivity is reflected in a reduced coating thickness and opportunities for potential savings during the transportation and installation activities. In the coming years, the offshore industry in Brazil will demand wet insulation systems delivering improved thermal performance. Hence, lower U value with lower CAPEX and in deeper water depths. This insulation system is a proven flow assurance coating technology, addressing those challenges and now available in the Brazilian market.","PeriodicalId":11089,"journal":{"name":"Day 2 Wed, October 30, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ULTRA: Flow Assurance Coating Technology - Product Portfolio for Distinct Operating Scenarios\",\"authors\":\"N. Cunha\",\"doi\":\"10.4043/29772-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n ULTRA™ is a novel and advanced flow assurance coating technology recently introduced in the Brazilian market for upcoming, and challenging, offshore projects expected in the next years. This coating technology has been used for over 9 years, and has been designed, applied and installed in offshore projects worldwide. Particularly over the last year, this thermal insulation system has been applied for a major project in Brazil. It is a thermal insulation system composed of fusion bonded epoxy and styrenic materials. A base 3-layer coating, followed by one or more insulation layers of solid or foamed styrene, and a high ductility outer shield were engineered to outperform some of existing solutions in terms of hydrostatic pressure, subsea stability, overall insulation thickness and associated installation costs. Application trials have been successfully performed to validate plant capabilities for applying the wide range of styrene-based system solutions, for shallow and deep waters. Test results demonstrated that foam and solid versions have a sweet spot in which the system outperforms similar to the wet insulation solutions existing in the Brazilian market. Its solid and foam systems demonstrated capability of delivering lower U - values (Overall Heat Transfer Coefficient) due to their lower thermal conductivity. The benefit of lower thermal conductivity is reflected in a reduced coating thickness and opportunities for potential savings during the transportation and installation activities. In the coming years, the offshore industry in Brazil will demand wet insulation systems delivering improved thermal performance. Hence, lower U value with lower CAPEX and in deeper water depths. This insulation system is a proven flow assurance coating technology, addressing those challenges and now available in the Brazilian market.\",\"PeriodicalId\":11089,\"journal\":{\"name\":\"Day 2 Wed, October 30, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 30, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29772-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 30, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29772-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ULTRA™是一种新型的、先进的流动保证涂层技术,最近被引入巴西市场,用于未来几年即将到来的、具有挑战性的海上项目。这种涂层技术已经使用了9年多,并已被设计、应用和安装在世界各地的海上项目中。特别是在去年,这种保温系统已经应用于巴西的一个重大项目。它是一种由环氧树脂和苯乙烯材料熔合而成的保温系统。在基础的3层涂层,随后是一个或多个固体或泡沫苯乙烯绝缘层,以及高延展性的外屏蔽层,在静水压力、海底稳定性、整体绝缘厚度和相关安装成本方面优于一些现有的解决方案。应用试验已经成功进行,以验证工厂在浅水和深水中应用广泛的苯乙烯基系统解决方案的能力。测试结果表明,泡沫和固体版本有一个最佳点,该系统优于巴西市场上现有的湿式绝缘解决方案。由于其较低的导热性,其固体和泡沫系统表现出提供较低U值(总传热系数)的能力。低导热系数的好处体现在涂层厚度的减少,以及运输和安装过程中潜在的节约机会。在未来的几年里,巴西的海上工业将需要湿式保温系统来提高热性能。因此,U值越低,CAPEX越低,水深越深。这种绝缘系统是一种经过验证的流动保证涂层技术,解决了这些挑战,现已在巴西市场上市。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ULTRA: Flow Assurance Coating Technology - Product Portfolio for Distinct Operating Scenarios
ULTRA™ is a novel and advanced flow assurance coating technology recently introduced in the Brazilian market for upcoming, and challenging, offshore projects expected in the next years. This coating technology has been used for over 9 years, and has been designed, applied and installed in offshore projects worldwide. Particularly over the last year, this thermal insulation system has been applied for a major project in Brazil. It is a thermal insulation system composed of fusion bonded epoxy and styrenic materials. A base 3-layer coating, followed by one or more insulation layers of solid or foamed styrene, and a high ductility outer shield were engineered to outperform some of existing solutions in terms of hydrostatic pressure, subsea stability, overall insulation thickness and associated installation costs. Application trials have been successfully performed to validate plant capabilities for applying the wide range of styrene-based system solutions, for shallow and deep waters. Test results demonstrated that foam and solid versions have a sweet spot in which the system outperforms similar to the wet insulation solutions existing in the Brazilian market. Its solid and foam systems demonstrated capability of delivering lower U - values (Overall Heat Transfer Coefficient) due to their lower thermal conductivity. The benefit of lower thermal conductivity is reflected in a reduced coating thickness and opportunities for potential savings during the transportation and installation activities. In the coming years, the offshore industry in Brazil will demand wet insulation systems delivering improved thermal performance. Hence, lower U value with lower CAPEX and in deeper water depths. This insulation system is a proven flow assurance coating technology, addressing those challenges and now available in the Brazilian market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信