递归神经网络知识产权保护的简单方法

Q3 Environmental Science
Zhi Qin Tan, H. P. Wong, Chee Seng Chan
{"title":"递归神经网络知识产权保护的简单方法","authors":"Zhi Qin Tan, H. P. Wong, Chee Seng Chan","doi":"10.48550/arXiv.2210.00743","DOIUrl":null,"url":null,"abstract":"Capitalise on deep learning models, offering Natural Language Processing (NLP) solutions as a part of the Machine Learning as a Service (MLaaS) has generated handsome revenues. At the same time, it is known that the creation of these lucrative deep models is non-trivial. Therefore, protecting these inventions’ intellectual property rights (IPR) from being abused, stolen and plagiarized is vital. This paper proposes a practical approach for the IPR protection on recurrent neural networks (RNN) without all the bells and whistles of existing IPR solutions. Particularly, we introduce the Gatekeeper concept that resembles the recurrent nature in RNN architecture to embed keys. Also, we design the model training scheme in a way such that the protected RNN model will retain its original performance iff a genuine key is presented. Extensive experiments showed that our protection scheme is robust and effective against ambiguity and removal attacks in both white-box and black-box protection schemes on different RNN variants. Code is available at https://github.com/zhiqin1998/RecurrentIPR.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"42 1","pages":"93-105"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Embarrassingly Simple Approach for Intellectual Property Rights Protection on Recurrent Neural Networks\",\"authors\":\"Zhi Qin Tan, H. P. Wong, Chee Seng Chan\",\"doi\":\"10.48550/arXiv.2210.00743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capitalise on deep learning models, offering Natural Language Processing (NLP) solutions as a part of the Machine Learning as a Service (MLaaS) has generated handsome revenues. At the same time, it is known that the creation of these lucrative deep models is non-trivial. Therefore, protecting these inventions’ intellectual property rights (IPR) from being abused, stolen and plagiarized is vital. This paper proposes a practical approach for the IPR protection on recurrent neural networks (RNN) without all the bells and whistles of existing IPR solutions. Particularly, we introduce the Gatekeeper concept that resembles the recurrent nature in RNN architecture to embed keys. Also, we design the model training scheme in a way such that the protected RNN model will retain its original performance iff a genuine key is presented. Extensive experiments showed that our protection scheme is robust and effective against ambiguity and removal attacks in both white-box and black-box protection schemes on different RNN variants. Code is available at https://github.com/zhiqin1998/RecurrentIPR.\",\"PeriodicalId\":39298,\"journal\":{\"name\":\"AACL Bioflux\",\"volume\":\"42 1\",\"pages\":\"93-105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AACL Bioflux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.00743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.00743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

利用深度学习模型,提供自然语言处理(NLP)解决方案,作为机器学习即服务(MLaaS)的一部分,已经产生了可观的收入。与此同时,众所周知,这些有利可图的深度模型的创建是不平凡的。因此,保护这些发明的知识产权不被滥用、窃取和剽窃是至关重要的。本文提出了一种实用的递归神经网络(RNN)知识产权保护方法,该方法不需要现有知识产权解决方案的所有附加功能。特别地,我们引入了类似于RNN架构中循环性质的看门人概念来嵌入密钥。此外,我们设计了模型训练方案,使受保护的RNN模型在提供真实密钥时保持其原始性能。大量的实验表明,我们的保护方案对不同RNN变体的白盒和黑盒保护方案都具有鲁棒性和有效性。代码可从https://github.com/zhiqin1998/RecurrentIPR获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Embarrassingly Simple Approach for Intellectual Property Rights Protection on Recurrent Neural Networks
Capitalise on deep learning models, offering Natural Language Processing (NLP) solutions as a part of the Machine Learning as a Service (MLaaS) has generated handsome revenues. At the same time, it is known that the creation of these lucrative deep models is non-trivial. Therefore, protecting these inventions’ intellectual property rights (IPR) from being abused, stolen and plagiarized is vital. This paper proposes a practical approach for the IPR protection on recurrent neural networks (RNN) without all the bells and whistles of existing IPR solutions. Particularly, we introduce the Gatekeeper concept that resembles the recurrent nature in RNN architecture to embed keys. Also, we design the model training scheme in a way such that the protected RNN model will retain its original performance iff a genuine key is presented. Extensive experiments showed that our protection scheme is robust and effective against ambiguity and removal attacks in both white-box and black-box protection schemes on different RNN variants. Code is available at https://github.com/zhiqin1998/RecurrentIPR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信