{"title":"R134a喷射器-膨胀式制冷循环及其替代品的性能对比研究:在汽车空调中的应用","authors":"K. Al‐Chlaihawi, H. Kadhim, Ahmad Hashim Yousif","doi":"10.1142/s2010132521500358","DOIUrl":null,"url":null,"abstract":"In this study, the performance of ejector-expansion refrigeration cycle (EERC) with R134a alternative refrigerants (R152a, R1234yf, R404A, R407C, R507A and R600a) for automobile air-conditioning application is investigated numerically. The ejector is modeled with a constant mixing-pressure assumption taking into consideration the friction effect in the ejector mixing section. The studied refrigerants are compared based on the optimum area ratio, discharge temperature, compressor input power, volumetric cooling capacity, exergy destruction, COP, exergy efficiency and COP improvement. The results show that R152a and R1234yf have the closest performance to R134a and can be considered the most suitable alternative refrigerants for R134a. The COP and exergy efficiency are improved by 2.26% and 2.27%, respectively, using R152a compared to the use of R134a, whereas they are reduced by 2.89% and 2.88% using R1234yf. The volumetric cooling capacity is reduced for both R152a and R1234yf by 6.14% and 6.8%, respectively. In addition, the effect of compressor rotational speed on the performances is reported.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparative Performance Study of an Ejector-Expansion Refrigeration Cycle Using R134a and its Alternatives: Application of Automobile Air Conditioning\",\"authors\":\"K. Al‐Chlaihawi, H. Kadhim, Ahmad Hashim Yousif\",\"doi\":\"10.1142/s2010132521500358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the performance of ejector-expansion refrigeration cycle (EERC) with R134a alternative refrigerants (R152a, R1234yf, R404A, R407C, R507A and R600a) for automobile air-conditioning application is investigated numerically. The ejector is modeled with a constant mixing-pressure assumption taking into consideration the friction effect in the ejector mixing section. The studied refrigerants are compared based on the optimum area ratio, discharge temperature, compressor input power, volumetric cooling capacity, exergy destruction, COP, exergy efficiency and COP improvement. The results show that R152a and R1234yf have the closest performance to R134a and can be considered the most suitable alternative refrigerants for R134a. The COP and exergy efficiency are improved by 2.26% and 2.27%, respectively, using R152a compared to the use of R134a, whereas they are reduced by 2.89% and 2.88% using R1234yf. The volumetric cooling capacity is reduced for both R152a and R1234yf by 6.14% and 6.8%, respectively. In addition, the effect of compressor rotational speed on the performances is reported.\",\"PeriodicalId\":13757,\"journal\":{\"name\":\"International Journal of Air-conditioning and Refrigeration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Air-conditioning and Refrigeration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010132521500358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132521500358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
A Comparative Performance Study of an Ejector-Expansion Refrigeration Cycle Using R134a and its Alternatives: Application of Automobile Air Conditioning
In this study, the performance of ejector-expansion refrigeration cycle (EERC) with R134a alternative refrigerants (R152a, R1234yf, R404A, R407C, R507A and R600a) for automobile air-conditioning application is investigated numerically. The ejector is modeled with a constant mixing-pressure assumption taking into consideration the friction effect in the ejector mixing section. The studied refrigerants are compared based on the optimum area ratio, discharge temperature, compressor input power, volumetric cooling capacity, exergy destruction, COP, exergy efficiency and COP improvement. The results show that R152a and R1234yf have the closest performance to R134a and can be considered the most suitable alternative refrigerants for R134a. The COP and exergy efficiency are improved by 2.26% and 2.27%, respectively, using R152a compared to the use of R134a, whereas they are reduced by 2.89% and 2.88% using R1234yf. The volumetric cooling capacity is reduced for both R152a and R1234yf by 6.14% and 6.8%, respectively. In addition, the effect of compressor rotational speed on the performances is reported.
期刊介绍:
As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.