使用不变签名从图像和视频中检索清晰的对象

Ronald-Bryan O. Alferez, Yuan-fang Wang
{"title":"使用不变签名从图像和视频中检索清晰的对象","authors":"Ronald-Bryan O. Alferez, Yuan-fang Wang","doi":"10.1109/ICME.2002.1035757","DOIUrl":null,"url":null,"abstract":"We propose a new method of retrieving multi-part, articulate objects from images and video. The scheme is particularly well suited for analyzing images and video for objects that can pose differently with possible shape deformation and articulated motion. The scheme involves computing an invariant signature for each segmented region in the image, in a manner that is insensitive to translation, rotation, scale, and shear. Using circular cross-correlation, these signatures can then be efficiently compared with that of user-defined regions of interest. Ambiguities between individual region matches are then resolved through relaxation labeling techniques. A final match is established when a collection of segmented regions conform to the query object, both in terms of local shape description and global structural relation. The scheme thus allows for articulated movement of object parts within the scene. The procedure is easy to implement, yet shows promising results in its ability to isolate interesting regions in images and video, to account for structural and relational constraints among regions, and to integrate both local shape and global structural information for a detailed examination of the scene in a way that is invariant to many visual variations.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"6 1","pages":"217-220 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrieval of articulate objects from images and video using invariant signatures\",\"authors\":\"Ronald-Bryan O. Alferez, Yuan-fang Wang\",\"doi\":\"10.1109/ICME.2002.1035757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method of retrieving multi-part, articulate objects from images and video. The scheme is particularly well suited for analyzing images and video for objects that can pose differently with possible shape deformation and articulated motion. The scheme involves computing an invariant signature for each segmented region in the image, in a manner that is insensitive to translation, rotation, scale, and shear. Using circular cross-correlation, these signatures can then be efficiently compared with that of user-defined regions of interest. Ambiguities between individual region matches are then resolved through relaxation labeling techniques. A final match is established when a collection of segmented regions conform to the query object, both in terms of local shape description and global structural relation. The scheme thus allows for articulated movement of object parts within the scene. The procedure is easy to implement, yet shows promising results in its ability to isolate interesting regions in images and video, to account for structural and relational constraints among regions, and to integrate both local shape and global structural information for a detailed examination of the scene in a way that is invariant to many visual variations.\",\"PeriodicalId\":90694,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"volume\":\"6 1\",\"pages\":\"217-220 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2002.1035757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种从图像和视频中检索多部分、清晰物体的新方法。该方案特别适合于分析物体的图像和视频,这些物体可能具有不同的形状变形和关节运动。该方案涉及计算图像中每个分割区域的不变签名,以一种对平移、旋转、缩放和剪切不敏感的方式。使用循环互相关,这些签名可以有效地与用户定义的感兴趣区域的签名进行比较。然后通过松弛标记技术解决单个区域匹配之间的歧义。当分割的区域集合符合查询对象的局部形状描述和全局结构关系时,就建立了最终匹配。因此,该方案允许场景中物体部分的铰接运动。该过程易于实现,但在隔离图像和视频中的有趣区域,考虑区域之间的结构和关系约束,以及整合局部形状和全局结构信息以对许多视觉变化不变的方式对场景进行详细检查方面显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieval of articulate objects from images and video using invariant signatures
We propose a new method of retrieving multi-part, articulate objects from images and video. The scheme is particularly well suited for analyzing images and video for objects that can pose differently with possible shape deformation and articulated motion. The scheme involves computing an invariant signature for each segmented region in the image, in a manner that is insensitive to translation, rotation, scale, and shear. Using circular cross-correlation, these signatures can then be efficiently compared with that of user-defined regions of interest. Ambiguities between individual region matches are then resolved through relaxation labeling techniques. A final match is established when a collection of segmented regions conform to the query object, both in terms of local shape description and global structural relation. The scheme thus allows for articulated movement of object parts within the scene. The procedure is easy to implement, yet shows promising results in its ability to isolate interesting regions in images and video, to account for structural and relational constraints among regions, and to integrate both local shape and global structural information for a detailed examination of the scene in a way that is invariant to many visual variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信