两阶段鲁棒非线性优化的对偶方法

IF 0.7 4区 管理学 Q3 Engineering
F.J.C.T. de Ruiter, Jianzhe Zhen, D. den Hertog
{"title":"两阶段鲁棒非线性优化的对偶方法","authors":"F.J.C.T. de Ruiter, Jianzhe Zhen, D. den Hertog","doi":"10.1287/opre.2022.2289","DOIUrl":null,"url":null,"abstract":"In “Dual Approach for Two-Stage Robust Nonlinear Optimization,” de Ruiter, Zhen, and den Hertog study adjustable robust minimization problems where the objective or constraints depend in a convex way on the adjustable variables. They reformulate the original adjustable robust nonlinear problem with a polyhedral uncertainty set into an equivalent adjustable robust linear problem, for which all existing approaches for adjustable robust linear problems can be used. The reformulation is obtained by first dualizing over the adjustable variables and then over the uncertain parameters. The polyhedral structure of the uncertainty set then appears in the linear constraints of the dualized problem, and the nonlinear functions of the adjustable variables in the original problem appear in the uncertainty set of the dualized problem. The authors show how to recover linear decision rules to the original primal problem and how to generate bounds on its optimal objective value.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dual Approach for Two-Stage Robust Nonlinear Optimization\",\"authors\":\"F.J.C.T. de Ruiter, Jianzhe Zhen, D. den Hertog\",\"doi\":\"10.1287/opre.2022.2289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In “Dual Approach for Two-Stage Robust Nonlinear Optimization,” de Ruiter, Zhen, and den Hertog study adjustable robust minimization problems where the objective or constraints depend in a convex way on the adjustable variables. They reformulate the original adjustable robust nonlinear problem with a polyhedral uncertainty set into an equivalent adjustable robust linear problem, for which all existing approaches for adjustable robust linear problems can be used. The reformulation is obtained by first dualizing over the adjustable variables and then over the uncertain parameters. The polyhedral structure of the uncertainty set then appears in the linear constraints of the dualized problem, and the nonlinear functions of the adjustable variables in the original problem appear in the uncertainty set of the dualized problem. The authors show how to recover linear decision rules to the original primal problem and how to generate bounds on its optimal objective value.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.2289\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.2289","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 8

摘要

在“两阶段鲁棒非线性优化的双重方法”中,de Ruiter, Zhen和den Hertog研究了目标或约束以凸方式依赖于可调变量的可调鲁棒最小化问题。他们将原来具有多面体不确定性集的可调鲁棒非线性问题重新表述为等效的可调鲁棒线性问题,该问题可以使用现有的所有可调鲁棒线性问题的方法。首先对可调变量进行对偶,然后对不确定参数进行对偶。不确定性集的多面体结构出现在对偶问题的线性约束中,原问题中可调变量的非线性函数出现在对偶问题的不确定性集中。作者展示了如何将线性决策规则恢复到原始问题,以及如何生成其最优目标值的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Approach for Two-Stage Robust Nonlinear Optimization
In “Dual Approach for Two-Stage Robust Nonlinear Optimization,” de Ruiter, Zhen, and den Hertog study adjustable robust minimization problems where the objective or constraints depend in a convex way on the adjustable variables. They reformulate the original adjustable robust nonlinear problem with a polyhedral uncertainty set into an equivalent adjustable robust linear problem, for which all existing approaches for adjustable robust linear problems can be used. The reformulation is obtained by first dualizing over the adjustable variables and then over the uncertain parameters. The polyhedral structure of the uncertainty set then appears in the linear constraints of the dualized problem, and the nonlinear functions of the adjustable variables in the original problem appear in the uncertainty set of the dualized problem. The authors show how to recover linear decision rules to the original primal problem and how to generate bounds on its optimal objective value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信