用EMAT在共振模式下测量胶粘剂结合强度

IF 2 Q2 ENGINEERING, MULTIDISCIPLINARY
Tianhao Liu, Hai-qiang Zhou, C. Pei, Zhenmao Chen
{"title":"用EMAT在共振模式下测量胶粘剂结合强度","authors":"Tianhao Liu, Hai-qiang Zhou, C. Pei, Zhenmao Chen","doi":"10.1115/1.4044638","DOIUrl":null,"url":null,"abstract":"\n The electromagnetic acoustic resonance (EMAR) method with shear wave is sensitive to boundary conditions and plate thickness. In this paper, a new noncontact ultrasonic testing method based on the electromagnetic acoustic transducer (EMAT) in the resonant mode is proposed for the bonding strength evaluation in metal-based adhesive structures. Different from the conventional pulse-echo method using short-burst excitation for bonding inspection, the attenuation coefficient feature of the resonant ultrasonic signal with long-burst excitation is applied to increase the signal-to-noise ratio (SNR) and detecting sensitivity of the EMAT for adhesive bonding strength evaluation. A theoretical model for adhesive bonding testing with EMAT signals in the resonant mode is established. To extract the signal feature representing the reflection coefficient, the time-domain signal was processed by Hilbert transformation and exponential curve fitting. Through the simulation on the received signal, the correlation between the attenuation coefficient of the exponent fitted curve and the strength on the adhesive imperfect interface were confirmed. Finally, the proposed correlation is verified by an experiment on stainless steel plates bonded with polymethyl methacrylate plates by epoxy adhesion via a permanent magnetic EMAT.","PeriodicalId":52294,"journal":{"name":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of Adhesive Bonding Strength With an EMAT in the Resonant Mode\",\"authors\":\"Tianhao Liu, Hai-qiang Zhou, C. Pei, Zhenmao Chen\",\"doi\":\"10.1115/1.4044638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The electromagnetic acoustic resonance (EMAR) method with shear wave is sensitive to boundary conditions and plate thickness. In this paper, a new noncontact ultrasonic testing method based on the electromagnetic acoustic transducer (EMAT) in the resonant mode is proposed for the bonding strength evaluation in metal-based adhesive structures. Different from the conventional pulse-echo method using short-burst excitation for bonding inspection, the attenuation coefficient feature of the resonant ultrasonic signal with long-burst excitation is applied to increase the signal-to-noise ratio (SNR) and detecting sensitivity of the EMAT for adhesive bonding strength evaluation. A theoretical model for adhesive bonding testing with EMAT signals in the resonant mode is established. To extract the signal feature representing the reflection coefficient, the time-domain signal was processed by Hilbert transformation and exponential curve fitting. Through the simulation on the received signal, the correlation between the attenuation coefficient of the exponent fitted curve and the strength on the adhesive imperfect interface were confirmed. Finally, the proposed correlation is verified by an experiment on stainless steel plates bonded with polymethyl methacrylate plates by epoxy adhesion via a permanent magnetic EMAT.\",\"PeriodicalId\":52294,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4044638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4044638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有剪切波的电磁声共振(EMAR)方法对边界条件和板厚敏感。本文提出了一种基于电磁声换能器(EMAT)谐振模式的非接触超声检测方法,用于评价金属基胶粘剂结构的粘结强度。不同于传统的脉冲回波法采用短突发激励进行粘接检测,利用长突发激励的超声共振信号的衰减系数特征,提高了EMAT的信噪比和检测灵敏度,用于粘接强度评价。建立了EMAT信号在谐振模式下粘接测试的理论模型。为了提取表征反射系数的信号特征,对时域信号进行希尔伯特变换和指数曲线拟合。通过对接收信号的仿真,证实了指数拟合曲线的衰减系数与粘接不完美界面上的强度之间的相关性。最后,通过永磁EMAT对不锈钢板与聚甲基丙烯酸甲酯板进行环氧粘接实验,验证了上述相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of Adhesive Bonding Strength With an EMAT in the Resonant Mode
The electromagnetic acoustic resonance (EMAR) method with shear wave is sensitive to boundary conditions and plate thickness. In this paper, a new noncontact ultrasonic testing method based on the electromagnetic acoustic transducer (EMAT) in the resonant mode is proposed for the bonding strength evaluation in metal-based adhesive structures. Different from the conventional pulse-echo method using short-burst excitation for bonding inspection, the attenuation coefficient feature of the resonant ultrasonic signal with long-burst excitation is applied to increase the signal-to-noise ratio (SNR) and detecting sensitivity of the EMAT for adhesive bonding strength evaluation. A theoretical model for adhesive bonding testing with EMAT signals in the resonant mode is established. To extract the signal feature representing the reflection coefficient, the time-domain signal was processed by Hilbert transformation and exponential curve fitting. Through the simulation on the received signal, the correlation between the attenuation coefficient of the exponent fitted curve and the strength on the adhesive imperfect interface were confirmed. Finally, the proposed correlation is verified by an experiment on stainless steel plates bonded with polymethyl methacrylate plates by epoxy adhesion via a permanent magnetic EMAT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
9.10%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信