动态条件相关GARCH模型的鲁棒预测

Kris Boudt, Jón Dańıelsson, S. Laurent
{"title":"动态条件相关GARCH模型的鲁棒预测","authors":"Kris Boudt, Jón Dańıelsson, S. Laurent","doi":"10.2139/ssrn.1717796","DOIUrl":null,"url":null,"abstract":"Large one-off events cause large changes in prices, but may not affect the volatility and correlation dynamics as much as smaller events. In such cases, standard volatility models may deliver biased covariance forecasts. We propose a multivariate volatility forecasting model that is accurate in the presence of large one-off events. The model is an extension of the dynamic conditional correlation (DCC) model. In our empirical application to forecasting the covariance matrix of the daily EUR/USD and Yen/USD return series, we find that our method produces more precise out-of-sample covariance forecasts than the DCC model. Furthermore, when used in portfolio allocation, it leads to portfolios with similar return characteristics but lower turnovers, and hence higher profits.","PeriodicalId":11485,"journal":{"name":"Econometrics: Applied Econometrics & Modeling eJournal","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Robust Forecasting of Dynamic Conditional Correlation GARCH Models\",\"authors\":\"Kris Boudt, Jón Dańıelsson, S. Laurent\",\"doi\":\"10.2139/ssrn.1717796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large one-off events cause large changes in prices, but may not affect the volatility and correlation dynamics as much as smaller events. In such cases, standard volatility models may deliver biased covariance forecasts. We propose a multivariate volatility forecasting model that is accurate in the presence of large one-off events. The model is an extension of the dynamic conditional correlation (DCC) model. In our empirical application to forecasting the covariance matrix of the daily EUR/USD and Yen/USD return series, we find that our method produces more precise out-of-sample covariance forecasts than the DCC model. Furthermore, when used in portfolio allocation, it leads to portfolios with similar return characteristics but lower turnovers, and hence higher profits.\",\"PeriodicalId\":11485,\"journal\":{\"name\":\"Econometrics: Applied Econometrics & Modeling eJournal\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometrics & Modeling eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1717796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometrics & Modeling eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1717796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

大型一次性事件会引起价格的巨大变化,但可能不会像小型事件那样影响波动性和相关性动态。在这种情况下,标准波动率模型可能提供有偏差的协方差预测。我们提出了一个多元波动率预测模型,该模型在存在大型一次性事件时是准确的。该模型是动态条件相关(DCC)模型的扩展。在我们对每日欧元/美元和日元/美元收益序列的协方差矩阵进行预测的实证应用中,我们发现我们的方法比DCC模型产生更精确的样本外协方差预测。此外,当用于投资组合配置时,它导致投资组合具有相似的回报特征,但更低的周转率,因此更高的利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Forecasting of Dynamic Conditional Correlation GARCH Models
Large one-off events cause large changes in prices, but may not affect the volatility and correlation dynamics as much as smaller events. In such cases, standard volatility models may deliver biased covariance forecasts. We propose a multivariate volatility forecasting model that is accurate in the presence of large one-off events. The model is an extension of the dynamic conditional correlation (DCC) model. In our empirical application to forecasting the covariance matrix of the daily EUR/USD and Yen/USD return series, we find that our method produces more precise out-of-sample covariance forecasts than the DCC model. Furthermore, when used in portfolio allocation, it leads to portfolios with similar return characteristics but lower turnovers, and hence higher profits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信