连续仿真优化的类角色临界随机自适应搜索

Oper. Res. Pub Date : 2021-12-30 DOI:10.1287/opre.2021.2214
Qi Zhang, Jiaqiao Hu
{"title":"连续仿真优化的类角色临界随机自适应搜索","authors":"Qi Zhang, Jiaqiao Hu","doi":"10.1287/opre.2021.2214","DOIUrl":null,"url":null,"abstract":"Many systems arising in applications from engineering design, manufacturing, and healthcare require the use of simulation optimization (SO) techniques to improve their performance. In “Actor-Critic–Like Stochastic Adaptive Search for Continuous Simulation Optimization,” Q. Zhang and J. Hu propose a randomized approach that integrates ideas from actor-critic reinforcement learning within a class of adaptive search algorithms for solving SO problems. The approach fully retains the previous simulation data and incorporates them into an approximation architecture to exploit knowledge of the objective function in searching for improved solutions. The authors provide a finite-time analysis for the method when only a single simulation observation is collected at each iteration. The method works well on a diverse set of benchmark problems and has the potential to yield good performance for complex problems using expensive simulation experiments for performance evaluation.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"41 13 1","pages":"3519-3537"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Actor-Critic-Like Stochastic Adaptive Search for Continuous Simulation Optimization\",\"authors\":\"Qi Zhang, Jiaqiao Hu\",\"doi\":\"10.1287/opre.2021.2214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many systems arising in applications from engineering design, manufacturing, and healthcare require the use of simulation optimization (SO) techniques to improve their performance. In “Actor-Critic–Like Stochastic Adaptive Search for Continuous Simulation Optimization,” Q. Zhang and J. Hu propose a randomized approach that integrates ideas from actor-critic reinforcement learning within a class of adaptive search algorithms for solving SO problems. The approach fully retains the previous simulation data and incorporates them into an approximation architecture to exploit knowledge of the objective function in searching for improved solutions. The authors provide a finite-time analysis for the method when only a single simulation observation is collected at each iteration. The method works well on a diverse set of benchmark problems and has the potential to yield good performance for complex problems using expensive simulation experiments for performance evaluation.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"41 13 1\",\"pages\":\"3519-3537\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2021.2214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在工程设计、制造和医疗保健应用程序中出现的许多系统都需要使用仿真优化(SO)技术来提高其性能。在“连续模拟优化的类行为者-批判者随机自适应搜索”中,Q. Zhang和J. Hu提出了一种随机方法,该方法将行为者-批判者强化学习的思想整合到一类自适应搜索算法中,用于解决SO问题。该方法充分保留了以前的模拟数据,并将其纳入近似体系结构中,以利用目标函数的知识来寻找改进的解决方案。当每次迭代只收集一次模拟观测时,作者提供了该方法的有限时间分析。该方法可以很好地处理各种各样的基准问题,并且有可能在使用昂贵的模拟实验进行性能评估的复杂问题上产生良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Actor-Critic-Like Stochastic Adaptive Search for Continuous Simulation Optimization
Many systems arising in applications from engineering design, manufacturing, and healthcare require the use of simulation optimization (SO) techniques to improve their performance. In “Actor-Critic–Like Stochastic Adaptive Search for Continuous Simulation Optimization,” Q. Zhang and J. Hu propose a randomized approach that integrates ideas from actor-critic reinforcement learning within a class of adaptive search algorithms for solving SO problems. The approach fully retains the previous simulation data and incorporates them into an approximation architecture to exploit knowledge of the objective function in searching for improved solutions. The authors provide a finite-time analysis for the method when only a single simulation observation is collected at each iteration. The method works well on a diverse set of benchmark problems and has the potential to yield good performance for complex problems using expensive simulation experiments for performance evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信