Hamilton José de Mello, Diego Rafael de Mello, Eduardo Carlos Bianchi, Paulo Roberto de Aguiar, Doriana M. D’Addona
{"title":"轮椅的铝转移手折叠与刹车的处理","authors":"Hamilton José de Mello, Diego Rafael de Mello, Eduardo Carlos Bianchi, Paulo Roberto de Aguiar, Doriana M. D’Addona","doi":"10.1590/0370-44672015680070","DOIUrl":null,"url":null,"abstract":"There has been a great advance in the grinding process by the development of dressing, lubri-refrigeration and other methods. Nevertheless, all of these advances were gained only for continuous cutting; in other words, the ground workpiece profile remains unchanged. Hence, it becomes necessary to study grinding process using intermittent cutting (grooved workpiece – discontinuous cutting), as little or no knowledge and studies have been developed for this purpose, since there is nothing found in formal literature, except for grooved grinding wheels. During the grinding process, heat generated in the cutting zone is extremely high. Therefore, plenty of cutting fluids are essential to cool not only the workpiece but also the grinding wheel, improving the grinding process. In this paper, grinding trials were performed using a conventional aluminum oxide grinding wheel, testing samples made of AISI 4340 steel quenched and tempered with 2, 6, and 12 grooves. The cylindrical plunge grinding was performed by rotating the workpiece on the grinding wheel. This plunge movement was made at three different speeds. From the obtained results, it can be observed that roughness tended to increase for testing sample with the same number of grooves, as rotation speed increased. Roundness error also tended to increase as the speed rotation process got higher for testing the sample with the same number of grooves. Grinding wheel wear enhanced as rotation speed and number of grooves increased. Power consumed by the grinding machine was inversely proportional to the number of grooves. Subsuperficial microhardness had no significant change. Micrographs reveal an optimal machining operation as there was no significant damage on the machined surface.","PeriodicalId":54498,"journal":{"name":"Rem-Revista Escola De Minas","volume":"22 1","pages":"229-238"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rolstoel van de Overdracht van het aluminium de Hand Vouwende met de Rem van het Handvat\",\"authors\":\"Hamilton José de Mello, Diego Rafael de Mello, Eduardo Carlos Bianchi, Paulo Roberto de Aguiar, Doriana M. D’Addona\",\"doi\":\"10.1590/0370-44672015680070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a great advance in the grinding process by the development of dressing, lubri-refrigeration and other methods. Nevertheless, all of these advances were gained only for continuous cutting; in other words, the ground workpiece profile remains unchanged. Hence, it becomes necessary to study grinding process using intermittent cutting (grooved workpiece – discontinuous cutting), as little or no knowledge and studies have been developed for this purpose, since there is nothing found in formal literature, except for grooved grinding wheels. During the grinding process, heat generated in the cutting zone is extremely high. Therefore, plenty of cutting fluids are essential to cool not only the workpiece but also the grinding wheel, improving the grinding process. In this paper, grinding trials were performed using a conventional aluminum oxide grinding wheel, testing samples made of AISI 4340 steel quenched and tempered with 2, 6, and 12 grooves. The cylindrical plunge grinding was performed by rotating the workpiece on the grinding wheel. This plunge movement was made at three different speeds. From the obtained results, it can be observed that roughness tended to increase for testing sample with the same number of grooves, as rotation speed increased. Roundness error also tended to increase as the speed rotation process got higher for testing the sample with the same number of grooves. Grinding wheel wear enhanced as rotation speed and number of grooves increased. Power consumed by the grinding machine was inversely proportional to the number of grooves. Subsuperficial microhardness had no significant change. Micrographs reveal an optimal machining operation as there was no significant damage on the machined surface.\",\"PeriodicalId\":54498,\"journal\":{\"name\":\"Rem-Revista Escola De Minas\",\"volume\":\"22 1\",\"pages\":\"229-238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rem-Revista Escola De Minas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0370-44672015680070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rem-Revista Escola De Minas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0370-44672015680070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Rolstoel van de Overdracht van het aluminium de Hand Vouwende met de Rem van het Handvat
There has been a great advance in the grinding process by the development of dressing, lubri-refrigeration and other methods. Nevertheless, all of these advances were gained only for continuous cutting; in other words, the ground workpiece profile remains unchanged. Hence, it becomes necessary to study grinding process using intermittent cutting (grooved workpiece – discontinuous cutting), as little or no knowledge and studies have been developed for this purpose, since there is nothing found in formal literature, except for grooved grinding wheels. During the grinding process, heat generated in the cutting zone is extremely high. Therefore, plenty of cutting fluids are essential to cool not only the workpiece but also the grinding wheel, improving the grinding process. In this paper, grinding trials were performed using a conventional aluminum oxide grinding wheel, testing samples made of AISI 4340 steel quenched and tempered with 2, 6, and 12 grooves. The cylindrical plunge grinding was performed by rotating the workpiece on the grinding wheel. This plunge movement was made at three different speeds. From the obtained results, it can be observed that roughness tended to increase for testing sample with the same number of grooves, as rotation speed increased. Roundness error also tended to increase as the speed rotation process got higher for testing the sample with the same number of grooves. Grinding wheel wear enhanced as rotation speed and number of grooves increased. Power consumed by the grinding machine was inversely proportional to the number of grooves. Subsuperficial microhardness had no significant change. Micrographs reveal an optimal machining operation as there was no significant damage on the machined surface.
期刊介绍:
REM – International Engineering Journal (antigua REM – Revista Escola de Minas) es la primera revista técnica de Sudamérica. Fue fundada en enero de 1936 por los estudiantes de la Escuela de Minas de Ouro Preto y desde entonces se ha especializado en la publicación de artículos en las áreas de la Ingeniería Civil, Geología, Metalurgia y Materiales y, Minería y Mecánica y Energía.
Su objetivo es servir como un medio de publicación para los trabajos técnicos y científicos originales de investigadores nacionales y extranjeros en esas áreas. Contribuciones originales (artículos y cartas) son aceptadas. Artículos de revisión dependen de la invitación y/o análisis de los Editores.
El envío de artículos para su publicación implica que el trabajo no ha sido publicado previamente, que no está siendo presentado para su publicación en otra revista y no se publicará en otro lugar, en la misma forma, sin el permiso, por escrito, de los Editores/Autores.