{"title":"关于扭转幂部分等距的族","authors":"V. Ostrovskyi, D. Proskurin, R. Yakymiv","doi":"10.15330/cmp.14.1.260-265","DOIUrl":null,"url":null,"abstract":"We consider families of power partial isometries satisfying twisted commutation relations with deformation parameters $\\lambda_{ij}\\in\\mathbb C$, $|\\lambda_{ij}|=1$. Irreducible representations of such a families are described up to the unitary equivalence. Namely any such representation corresponds, up to the unitary equivalence, to irreducible representation of certain higher-dimensional non-commutative torus.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On families of twisted power partial isometries\",\"authors\":\"V. Ostrovskyi, D. Proskurin, R. Yakymiv\",\"doi\":\"10.15330/cmp.14.1.260-265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider families of power partial isometries satisfying twisted commutation relations with deformation parameters $\\\\lambda_{ij}\\\\in\\\\mathbb C$, $|\\\\lambda_{ij}|=1$. Irreducible representations of such a families are described up to the unitary equivalence. Namely any such representation corresponds, up to the unitary equivalence, to irreducible representation of certain higher-dimensional non-commutative torus.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.1.260-265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.260-265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider families of power partial isometries satisfying twisted commutation relations with deformation parameters $\lambda_{ij}\in\mathbb C$, $|\lambda_{ij}|=1$. Irreducible representations of such a families are described up to the unitary equivalence. Namely any such representation corresponds, up to the unitary equivalence, to irreducible representation of certain higher-dimensional non-commutative torus.