神经网络分子:通过软件支持量子叠加在人工神经元网络输出上的解逆生物测量问题

V. Volchikhin
{"title":"神经网络分子:通过软件支持量子叠加在人工神经元网络输出上的解逆生物测量问题","authors":"V. Volchikhin","doi":"10.15507/0236-2910.027.201704.518-529","DOIUrl":null,"url":null,"abstract":"Введение. Целью работы является многократное ускорение решения обратной задачи нейросетевой биометрии на обычном настольном компьютере. Материалы и методы. Для ускорения вычислений искусственная нейронная сеть вводится в динамический режим «дрожания» состояний всех ее 256 выходных разрядов. При этом слишком большое число выходных состояний нейронной сети логарифмически свертывается путем перехода в пространство расстояний Хэмминга между кодом образа «Свой» и кодами образов «Чужой». Из базы образов «Чужой» выбирается 2,5 % наиболее похожих образов. В следующем поколении осуществляют восстановление 97,5 % отброшенных образов процедурами ГОСТ Р 52633.22010 путем скрещивания образов-родителей и получения от них образов-потомков. Результаты исследования. За время порядка 10 мин удается осуществить 60 поколений направленого поиска решения обратной задачи, что дает возможность обращения матриц нейросетевых функционалов размерности 416 входов на 256 выходов с восстановлением до 97 % информации о неизвестных биометрических параметрах образа «Свой». Обсуждение и заключения. Поддержка в течение 10 мин машинного времени 256-кубитной квантовой суперпозиции позволяет на обычном компьютере обойти актуальную бесконечность анализируемых состояний в 5050 (50 в степени 50) раз больше, чем мог бы сделать этот же компьютер, реализуя обычные вычисления. Увеличение длины поддерживаемой квантовой суперпозиции на 40 кубит эквивалентно увеличению тактовой частоты процессора приблизительно в 1 млрд раз. Именно по этой причине увеличение количества поддерживаемых кубит программным эмулятором квантовой суперпозиции более выгодно, чем создание более мощного процессора.","PeriodicalId":53930,"journal":{"name":"Mordovia University Bulletin","volume":"5 1","pages":"518-529"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network Molecule: a Solution of the Inverse Biometry Problem through Software Support of Quantum Superposition on Outputs of the Network of Artificial Neurons\",\"authors\":\"V. Volchikhin\",\"doi\":\"10.15507/0236-2910.027.201704.518-529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Введение. Целью работы является многократное ускорение решения обратной задачи нейросетевой биометрии на обычном настольном компьютере. Материалы и методы. Для ускорения вычислений искусственная нейронная сеть вводится в динамический режим «дрожания» состояний всех ее 256 выходных разрядов. При этом слишком большое число выходных состояний нейронной сети логарифмически свертывается путем перехода в пространство расстояний Хэмминга между кодом образа «Свой» и кодами образов «Чужой». Из базы образов «Чужой» выбирается 2,5 % наиболее похожих образов. В следующем поколении осуществляют восстановление 97,5 % отброшенных образов процедурами ГОСТ Р 52633.22010 путем скрещивания образов-родителей и получения от них образов-потомков. Результаты исследования. За время порядка 10 мин удается осуществить 60 поколений направленого поиска решения обратной задачи, что дает возможность обращения матриц нейросетевых функционалов размерности 416 входов на 256 выходов с восстановлением до 97 % информации о неизвестных биометрических параметрах образа «Свой». Обсуждение и заключения. Поддержка в течение 10 мин машинного времени 256-кубитной квантовой суперпозиции позволяет на обычном компьютере обойти актуальную бесконечность анализируемых состояний в 5050 (50 в степени 50) раз больше, чем мог бы сделать этот же компьютер, реализуя обычные вычисления. Увеличение длины поддерживаемой квантовой суперпозиции на 40 кубит эквивалентно увеличению тактовой частоты процессора приблизительно в 1 млрд раз. Именно по этой причине увеличение количества поддерживаемых кубит программным эмулятором квантовой суперпозиции более выгодно, чем создание более мощного процессора.\",\"PeriodicalId\":53930,\"journal\":{\"name\":\"Mordovia University Bulletin\",\"volume\":\"5 1\",\"pages\":\"518-529\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mordovia University Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/0236-2910.027.201704.518-529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mordovia University Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/0236-2910.027.201704.518-529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

引入。这项工作的目的是在普通台式电脑上多次加速神经网络生物特征反向问题的解决。材料和方法。为了加快计算,人工神经网络被引入到所有256个输出放电状态的动态状态下。然而,太多的神经网络输出通过将自己的图像代码和外星人的图像代码之间的距离转换成对数。从异形数据库中,2.5%的异形被选中。在下一代中,52633.22010年,通过将父母的形象和后代的形象结合起来,恢复了97.5%的被抛弃的图像。研究结果。大约10个地雷通过了60代定向反转目标,使416个通道到256个出口的神经网络功能矩阵能够逆转,恢复到97%的未知的生物特征参数。讨论和结论。在10个机器时间256-立方米量子叠加位内的支持使得普通计算机能够比普通计算机所能做的任何事情都多5050倍(50倍)。增加40立方米的量子超位长度相当于将处理器的时钟频率提高10亿倍。正是因为这个原因,量子叠加器支持库比特的数量比创建一个更强大的处理器更有利可图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Molecule: a Solution of the Inverse Biometry Problem through Software Support of Quantum Superposition on Outputs of the Network of Artificial Neurons
Введение. Целью работы является многократное ускорение решения обратной задачи нейросетевой биометрии на обычном настольном компьютере. Материалы и методы. Для ускорения вычислений искусственная нейронная сеть вводится в динамический режим «дрожания» состояний всех ее 256 выходных разрядов. При этом слишком большое число выходных состояний нейронной сети логарифмически свертывается путем перехода в пространство расстояний Хэмминга между кодом образа «Свой» и кодами образов «Чужой». Из базы образов «Чужой» выбирается 2,5 % наиболее похожих образов. В следующем поколении осуществляют восстановление 97,5 % отброшенных образов процедурами ГОСТ Р 52633.22010 путем скрещивания образов-родителей и получения от них образов-потомков. Результаты исследования. За время порядка 10 мин удается осуществить 60 поколений направленого поиска решения обратной задачи, что дает возможность обращения матриц нейросетевых функционалов размерности 416 входов на 256 выходов с восстановлением до 97 % информации о неизвестных биометрических параметрах образа «Свой». Обсуждение и заключения. Поддержка в течение 10 мин машинного времени 256-кубитной квантовой суперпозиции позволяет на обычном компьютере обойти актуальную бесконечность анализируемых состояний в 5050 (50 в степени 50) раз больше, чем мог бы сделать этот же компьютер, реализуя обычные вычисления. Увеличение длины поддерживаемой квантовой суперпозиции на 40 кубит эквивалентно увеличению тактовой частоты процессора приблизительно в 1 млрд раз. Именно по этой причине увеличение количества поддерживаемых кубит программным эмулятором квантовой суперпозиции более выгодно, чем создание более мощного процессора.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mordovia University Bulletin
Mordovia University Bulletin MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信