{"title":"MEMS/NEMS低温A-SiC/Si直接键合技术","authors":"Jiangang Du, C. Zorman","doi":"10.1109/SENSOR.2007.4300573","DOIUrl":null,"url":null,"abstract":"A low temperature (450degC) amorphous, hydrogenated silicon carbide (a-SiC:H) thin film transfer technology by way of a-SiC:H/Si direct bonding is described. Compared to traditional thin film bonding and transfer processes, the proposed approach does not rely on IC-incompatible substances or high process temperatures to form the bond. Due to the ultra-smooth a-SiC surfaces, a CMP step normally used in traditional direct bonding is not required. Using this approach, prototype structures, such as nanogap channels and vacuum-sealed, micron-deep reservoirs with a-SiC films as capping layers have been successful fabricated.","PeriodicalId":23295,"journal":{"name":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"40 1","pages":"2075-2078"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low Temperature A-SiC/Si Direct Bonding Technology for MEMS/NEMS\",\"authors\":\"Jiangang Du, C. Zorman\",\"doi\":\"10.1109/SENSOR.2007.4300573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low temperature (450degC) amorphous, hydrogenated silicon carbide (a-SiC:H) thin film transfer technology by way of a-SiC:H/Si direct bonding is described. Compared to traditional thin film bonding and transfer processes, the proposed approach does not rely on IC-incompatible substances or high process temperatures to form the bond. Due to the ultra-smooth a-SiC surfaces, a CMP step normally used in traditional direct bonding is not required. Using this approach, prototype structures, such as nanogap channels and vacuum-sealed, micron-deep reservoirs with a-SiC films as capping layers have been successful fabricated.\",\"PeriodicalId\":23295,\"journal\":{\"name\":\"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference\",\"volume\":\"40 1\",\"pages\":\"2075-2078\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2007.4300573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2007.4300573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low Temperature A-SiC/Si Direct Bonding Technology for MEMS/NEMS
A low temperature (450degC) amorphous, hydrogenated silicon carbide (a-SiC:H) thin film transfer technology by way of a-SiC:H/Si direct bonding is described. Compared to traditional thin film bonding and transfer processes, the proposed approach does not rely on IC-incompatible substances or high process temperatures to form the bond. Due to the ultra-smooth a-SiC surfaces, a CMP step normally used in traditional direct bonding is not required. Using this approach, prototype structures, such as nanogap channels and vacuum-sealed, micron-deep reservoirs with a-SiC films as capping layers have been successful fabricated.