{"title":"固体目标在液体环境下的脉冲激光烧蚀","authors":"M. Osiac, M. Dinu, M. Udriștioiu","doi":"10.1515/awutp-2016-0007","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the viability of laser ablation of gold target immersed in medical distillated water used to produce nanoparticles having morphological, structural and compositional properties for medical applications is explored. The morphological properties were investigated by means of scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDX) analysis was used to reveal the composition of resulting particles. The absorbance in the wavelengths range of 300-800 nm can be assigned to the small gold nanoparticles.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":"11 1","pages":"68 - 73"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulsed Laser Ablation of the Solid Targets in a Liquid Environment\",\"authors\":\"M. Osiac, M. Dinu, M. Udriștioiu\",\"doi\":\"10.1515/awutp-2016-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the viability of laser ablation of gold target immersed in medical distillated water used to produce nanoparticles having morphological, structural and compositional properties for medical applications is explored. The morphological properties were investigated by means of scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDX) analysis was used to reveal the composition of resulting particles. The absorbance in the wavelengths range of 300-800 nm can be assigned to the small gold nanoparticles.\",\"PeriodicalId\":31012,\"journal\":{\"name\":\"Annals of West University of Timisoara Physics\",\"volume\":\"11 1\",\"pages\":\"68 - 73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of West University of Timisoara Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/awutp-2016-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/awutp-2016-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pulsed Laser Ablation of the Solid Targets in a Liquid Environment
Abstract In this paper, the viability of laser ablation of gold target immersed in medical distillated water used to produce nanoparticles having morphological, structural and compositional properties for medical applications is explored. The morphological properties were investigated by means of scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDX) analysis was used to reveal the composition of resulting particles. The absorbance in the wavelengths range of 300-800 nm can be assigned to the small gold nanoparticles.