L. Feder, B. Miao, J. Shrock, A. Goffin, H. Milchberg
{"title":"相对论性激光脉冲在中性气体通道中的自波导","authors":"L. Feder, B. Miao, J. Shrock, A. Goffin, H. Milchberg","doi":"10.1103/PHYSREVRESEARCH.2.043173","DOIUrl":null,"url":null,"abstract":"We demonstrate that an ultrashort high intensity laser pulse can propagate for hundreds of Rayleigh ranges in a prepared neutral hydrogen channel by generating its own plasma waveguide as it propagates; the front of the pulse generates a waveguide that confines the rest of the pulse. A wide range of suitable initial index structures will support this \"self-waveguiding\" process; the necessary feature is that the gas density on axis is a minimum. Here, we demonstrate self-waveguiding of pulses of at least $1.5\\times10^{17} W/cm^2$ (normalized vector potential $a_0\\sim0.3)$ over 10 cm, or $\\sim100$ Rayleigh ranges, limited only by our laser energy and length of our gas jet. We predict and observe characteristic oscillations corresponding to mode-beating during self-waveguiding. The self-waveguiding pulse leaves in its wake a fully ionized low density plasma waveguide which can guide another pulse injected immediately following; we demonstrate optical guiding of such a follow-on probe pulse","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Self-waveguiding of relativistic laser pulses in neutral gas channels\",\"authors\":\"L. Feder, B. Miao, J. Shrock, A. Goffin, H. Milchberg\",\"doi\":\"10.1103/PHYSREVRESEARCH.2.043173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that an ultrashort high intensity laser pulse can propagate for hundreds of Rayleigh ranges in a prepared neutral hydrogen channel by generating its own plasma waveguide as it propagates; the front of the pulse generates a waveguide that confines the rest of the pulse. A wide range of suitable initial index structures will support this \\\"self-waveguiding\\\" process; the necessary feature is that the gas density on axis is a minimum. Here, we demonstrate self-waveguiding of pulses of at least $1.5\\\\times10^{17} W/cm^2$ (normalized vector potential $a_0\\\\sim0.3)$ over 10 cm, or $\\\\sim100$ Rayleigh ranges, limited only by our laser energy and length of our gas jet. We predict and observe characteristic oscillations corresponding to mode-beating during self-waveguiding. The self-waveguiding pulse leaves in its wake a fully ionized low density plasma waveguide which can guide another pulse injected immediately following; we demonstrate optical guiding of such a follow-on probe pulse\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.2.043173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.043173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-waveguiding of relativistic laser pulses in neutral gas channels
We demonstrate that an ultrashort high intensity laser pulse can propagate for hundreds of Rayleigh ranges in a prepared neutral hydrogen channel by generating its own plasma waveguide as it propagates; the front of the pulse generates a waveguide that confines the rest of the pulse. A wide range of suitable initial index structures will support this "self-waveguiding" process; the necessary feature is that the gas density on axis is a minimum. Here, we demonstrate self-waveguiding of pulses of at least $1.5\times10^{17} W/cm^2$ (normalized vector potential $a_0\sim0.3)$ over 10 cm, or $\sim100$ Rayleigh ranges, limited only by our laser energy and length of our gas jet. We predict and observe characteristic oscillations corresponding to mode-beating during self-waveguiding. The self-waveguiding pulse leaves in its wake a fully ionized low density plasma waveguide which can guide another pulse injected immediately following; we demonstrate optical guiding of such a follow-on probe pulse