带乘性噪声的随机热方程经不规则扰动的路径正则化

IF 1.5 Q2 PHYSICS, MATHEMATICAL
R. Catellier, Fabian A. Harang
{"title":"带乘性噪声的随机热方程经不规则扰动的路径正则化","authors":"R. Catellier, Fabian A. Harang","doi":"10.1214/22-aihp1302","DOIUrl":null,"url":null,"abstract":"Existence and uniqueness of solutions to the stochastic heat equation with multiplicative spatial noise is studied. In the spirit of pathwise regularization by noise, we show that a perturbation by a sufficiently irregular continuous path establish wellposedness of such equations, even when the drift and diffusion coefficients are given as generalized functions or distributions. In addition we prove regularity of the averaged field associated to a L\\'evy fractional stable motion, and use this as an example of a perturbation regularizing the multiplicative stochastic heat equation.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pathwise regularization of the stochastic heat equation with multiplicative noise through irregular perturbation\",\"authors\":\"R. Catellier, Fabian A. Harang\",\"doi\":\"10.1214/22-aihp1302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existence and uniqueness of solutions to the stochastic heat equation with multiplicative spatial noise is studied. In the spirit of pathwise regularization by noise, we show that a perturbation by a sufficiently irregular continuous path establish wellposedness of such equations, even when the drift and diffusion coefficients are given as generalized functions or distributions. In addition we prove regularity of the averaged field associated to a L\\\\'evy fractional stable motion, and use this as an example of a perturbation regularizing the multiplicative stochastic heat equation.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 7

摘要

研究了具有乘性空间噪声的随机热方程解的存在唯一性。在噪声路径正则化的精神下,我们证明了一个足够不规则的连续路径的扰动建立了这种方程的适定性,即使当漂移系数和扩散系数作为广义函数或分布给出时也是如此。此外,我们证明了与L′evy分数阶稳定运动相关的平均场的正则性,并以此作为一个扰动正则化乘法随机热方程的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pathwise regularization of the stochastic heat equation with multiplicative noise through irregular perturbation
Existence and uniqueness of solutions to the stochastic heat equation with multiplicative spatial noise is studied. In the spirit of pathwise regularization by noise, we show that a perturbation by a sufficiently irregular continuous path establish wellposedness of such equations, even when the drift and diffusion coefficients are given as generalized functions or distributions. In addition we prove regularity of the averaged field associated to a L\'evy fractional stable motion, and use this as an example of a perturbation regularizing the multiplicative stochastic heat equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信