无算子范数先验知识的半收缩算子SCFPP自适应求解算法

Pub Date : 2019-12-01 DOI:10.2478/auom-2019-0039
D. Kitkuan, P. Kumam, V. Berinde, A. Padcharoen
{"title":"无算子范数先验知识的半收缩算子SCFPP自适应求解算法","authors":"D. Kitkuan, P. Kumam, V. Berinde, A. Padcharoen","doi":"10.2478/auom-2019-0039","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the split common fixed point problem in Hilbert spaces. We find a common solution of the split common fixed point problem for two demicontractive operators without a priori knowledge of operator norms. A strong convergence theorem is obtained under some additional conditions and numerical examples are included to illustrate the applications in signal compressed sensing and image restoration.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive algorithm for solving the SCFPP of demicontractive operators without a priori knowledge of operator norms\",\"authors\":\"D. Kitkuan, P. Kumam, V. Berinde, A. Padcharoen\",\"doi\":\"10.2478/auom-2019-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the split common fixed point problem in Hilbert spaces. We find a common solution of the split common fixed point problem for two demicontractive operators without a priori knowledge of operator norms. A strong convergence theorem is obtained under some additional conditions and numerical examples are included to illustrate the applications in signal compressed sensing and image restoration.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2019-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2019-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要研究了Hilbert空间中的分裂公共不动点问题。在不知道算子范数的前提下,我们得到了两个半收缩算子的分裂不动点问题的一个公共解。在一定的附加条件下,得到了一个强收敛定理,并通过数值实例说明了该算法在信号压缩感知和图像恢复中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Adaptive algorithm for solving the SCFPP of demicontractive operators without a priori knowledge of operator norms
Abstract In this paper, we study the split common fixed point problem in Hilbert spaces. We find a common solution of the split common fixed point problem for two demicontractive operators without a priori knowledge of operator norms. A strong convergence theorem is obtained under some additional conditions and numerical examples are included to illustrate the applications in signal compressed sensing and image restoration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信