无算子范数先验知识的半收缩算子SCFPP自适应求解算法

IF 0.8 4区 数学 Q2 MATHEMATICS
D. Kitkuan, P. Kumam, V. Berinde, A. Padcharoen
{"title":"无算子范数先验知识的半收缩算子SCFPP自适应求解算法","authors":"D. Kitkuan, P. Kumam, V. Berinde, A. Padcharoen","doi":"10.2478/auom-2019-0039","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the split common fixed point problem in Hilbert spaces. We find a common solution of the split common fixed point problem for two demicontractive operators without a priori knowledge of operator norms. A strong convergence theorem is obtained under some additional conditions and numerical examples are included to illustrate the applications in signal compressed sensing and image restoration.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"65 1","pages":"153 - 175"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive algorithm for solving the SCFPP of demicontractive operators without a priori knowledge of operator norms\",\"authors\":\"D. Kitkuan, P. Kumam, V. Berinde, A. Padcharoen\",\"doi\":\"10.2478/auom-2019-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the split common fixed point problem in Hilbert spaces. We find a common solution of the split common fixed point problem for two demicontractive operators without a priori knowledge of operator norms. A strong convergence theorem is obtained under some additional conditions and numerical examples are included to illustrate the applications in signal compressed sensing and image restoration.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"65 1\",\"pages\":\"153 - 175\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2019-0039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2019-0039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

摘要研究了Hilbert空间中的分裂公共不动点问题。在不知道算子范数的前提下,我们得到了两个半收缩算子的分裂不动点问题的一个公共解。在一定的附加条件下,得到了一个强收敛定理,并通过数值实例说明了该算法在信号压缩感知和图像恢复中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive algorithm for solving the SCFPP of demicontractive operators without a priori knowledge of operator norms
Abstract In this paper, we study the split common fixed point problem in Hilbert spaces. We find a common solution of the split common fixed point problem for two demicontractive operators without a priori knowledge of operator norms. A strong convergence theorem is obtained under some additional conditions and numerical examples are included to illustrate the applications in signal compressed sensing and image restoration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信