{"title":"基于机器学习的加密流量分类:识别SSH和Skype","authors":"Riyad Alshammari, A. N. Zincir-Heywood","doi":"10.1109/CISDA.2009.5356534","DOIUrl":null,"url":null,"abstract":"The objective of this work is to assess the robustness of machine learning based traffic classification for classifying encrypted traffic where SSH and Skype are taken as good representatives of encrypted traffic. Here what we mean by robustness is that the classifiers are trained on data from one network but tested on data from an entirely different network. To this end, five learning algorithms — AdaBoost, Support Vector Machine, Naïe Bayesian, RIPPER and C4.5 — are evaluated using flow based features, where IP addresses, source/destination ports and payload information are not employed. Results indicate the C4.5 based approach performs much better than other algorithms on the identification of both SSH and Skype traffic on totally different networks.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"93 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":"{\"title\":\"Machine learning based encrypted traffic classification: Identifying SSH and Skype\",\"authors\":\"Riyad Alshammari, A. N. Zincir-Heywood\",\"doi\":\"10.1109/CISDA.2009.5356534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to assess the robustness of machine learning based traffic classification for classifying encrypted traffic where SSH and Skype are taken as good representatives of encrypted traffic. Here what we mean by robustness is that the classifiers are trained on data from one network but tested on data from an entirely different network. To this end, five learning algorithms — AdaBoost, Support Vector Machine, Naïe Bayesian, RIPPER and C4.5 — are evaluated using flow based features, where IP addresses, source/destination ports and payload information are not employed. Results indicate the C4.5 based approach performs much better than other algorithms on the identification of both SSH and Skype traffic on totally different networks.\",\"PeriodicalId\":6407,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"volume\":\"93 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"185\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2009.5356534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning based encrypted traffic classification: Identifying SSH and Skype
The objective of this work is to assess the robustness of machine learning based traffic classification for classifying encrypted traffic where SSH and Skype are taken as good representatives of encrypted traffic. Here what we mean by robustness is that the classifiers are trained on data from one network but tested on data from an entirely different network. To this end, five learning algorithms — AdaBoost, Support Vector Machine, Naïe Bayesian, RIPPER and C4.5 — are evaluated using flow based features, where IP addresses, source/destination ports and payload information are not employed. Results indicate the C4.5 based approach performs much better than other algorithms on the identification of both SSH and Skype traffic on totally different networks.