自动检测直接辐射的数字透视优化

Yongjian Yu, Jue Wang, S. Acton
{"title":"自动检测直接辐射的数字透视优化","authors":"Yongjian Yu, Jue Wang, S. Acton","doi":"10.1109/ICIP.2016.7532986","DOIUrl":null,"url":null,"abstract":"We present a histogram-based real-time solution to detecting directly irradiated regions in digital fluoroscopic images. Our method leverages the power of model matching, machine learning and domain knowledge to characterize and segment images using histograms. The input image is automatically identified as containing partial, all, or null direct radiation. The regions with direct radiation are segmented out via global thresholding according to image characterizations. The algorithm involves only one-dimensional processing. The test results achieved 99.82% accurate detection rate on a dataset of 9256 clinical images.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"3379-3383"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of direct radiation for digital fluoroscopy optimization\",\"authors\":\"Yongjian Yu, Jue Wang, S. Acton\",\"doi\":\"10.1109/ICIP.2016.7532986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a histogram-based real-time solution to detecting directly irradiated regions in digital fluoroscopic images. Our method leverages the power of model matching, machine learning and domain knowledge to characterize and segment images using histograms. The input image is automatically identified as containing partial, all, or null direct radiation. The regions with direct radiation are segmented out via global thresholding according to image characterizations. The algorithm involves only one-dimensional processing. The test results achieved 99.82% accurate detection rate on a dataset of 9256 clinical images.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"3379-3383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于直方图的实时解决方案,用于检测数字透视图像中直接照射的区域。我们的方法利用模型匹配、机器学习和领域知识的力量,使用直方图对图像进行表征和分割。输入图像被自动识别为包含部分、全部或零直接辐射。根据图像特征,通过全局阈值分割出有直接辐射的区域。该算法只涉及一维处理。在9256张临床图像的数据集上,测试结果达到99.82%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic detection of direct radiation for digital fluoroscopy optimization
We present a histogram-based real-time solution to detecting directly irradiated regions in digital fluoroscopic images. Our method leverages the power of model matching, machine learning and domain knowledge to characterize and segment images using histograms. The input image is automatically identified as containing partial, all, or null direct radiation. The regions with direct radiation are segmented out via global thresholding according to image characterizations. The algorithm involves only one-dimensional processing. The test results achieved 99.82% accurate detection rate on a dataset of 9256 clinical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信